Analysis of the Physiochemical Interactions of Recycled Materials in Concrete
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis broadly addresses the issue of materials sustainability in the production of Portland cement concrete. Two methods are presented, both aimed at achieving more sustainable concrete through the use of waste and recycled materials. The first method involves utilizing reclaimed asphalt pavement (RAP) as an aggregate in structural concrete, and the second method involves utilizing waste quarry fines as partial replacement of Portland cement in concrete mixes. Many efforts have been made in recent years to justify the use of RAP aggregates in concrete. All previous efforts appear to unanimously report a reduction in concrete performance with varying proportions of RAP usage. The poor performance of RAP aggregates in concrete is attributed mainly to a larger, more porous interfacial transition zone (ITZ) and to the cohesive failure of the asphalt. It is hypothesized that the detrimental impact on the ITZ is attributable to organic compounds leached from the asphalt in the high pH pore solution. This study proves the presence of organic compounds in the pore solution and demonstrates that there is an apparent retardation of cement hydration. This study also attempted to pretreat the RAP in a sodium hydroxide (NaOH) solution to pre-leach the organic compounds. The pretreatment demonstrated that organic compounds were leached and that NaOH modified the asphalt surface chemistry. However, only a marginal improvement in compressive strength was observed by completing the pretreatment. Replacement of Portland cement by filler products is a practice aimed at reducing the carbon footprint of concrete, such as is common with Type IL Portland limestone cement. This study investigates the impact of replacing cement with seven different quarry fines materials. The quarry fines were used to replace cement at 5% to 20% by volume in either cement paste or mortar samples that were then analyzed for various physicochemical properties. It was found that all the quarry fines had detrimental impact on the hydration kinetics of cement pastes. The inclusion of quarry fines was also found to cause varying degrees of reduction in mortar compressive strength. While further analyses of the quarry fines are required, quarry fines 2, 5 and 7 did display encouraging signs to suggest the potential for use as a filler material in blended cements.