Post-Closure Silica Transport in the Proposed High Level Radioactive Waste Repository at Yucca Mountain, Nevada

dc.contributor.authorSun, Zhuangen
dc.contributor.committeechairRimstidt, J. Donalden
dc.contributor.committeememberZelazny, Lucian W.en
dc.contributor.committeememberCraig, James R.en
dc.contributor.departmentGeological Sciencesen
dc.date.accessioned2014-03-14T20:51:47Zen
dc.date.adate1997-05-05en
dc.date.available2014-03-14T20:51:47Zen
dc.date.issued1997-05-05en
dc.date.rdate1998-05-05en
dc.date.sdate1997-05-05en
dc.description.abstractThe United States plans to bury high level radioactive waste from commercial power reactors and from nuclear weapons manufacturing in Yucca Mountain, Nevada. Yucca Mountain, located about 80 miles northwest of Las Vegas, consists of horizontally bedded tuff deposits. Although the region is very arid, enough water exists in the tuffs to create a vapor dominated geothermal system as the pore water evaporates, circulates and recondenses. This study examines how silica leaching might occur as a result of water-tuff interactions in Yucca Mountain after the emplacement of heat-producing nuclear waste canisters. A vertical thermal gradient experiment (VTGE) was designed and built in order to simulate the water cycling scenario where water in the tuff is vaporized by the heat from the canisters, moves to cooler regions along fractures and condenses as a liquid which flows downward toward the hot canisters. This experiment was used to measure the rate of silica leaching from Yucca Mountain tuff at various heat fluxes. The results show that under the experimental conditions silica is leached from the tuff sample very effectively (about 1.85 x 10 -8 g per Joule of heat transferred). With such a rate, significant amount of amorphous silica (135 kg per canister for the first 1,000 years after emplacement) could be leached, transported and deposited above the repository horizon; the resulting low permeability zone might change the geological and hydrological properties of the host rock. A significant amount of colloidal silica was formed in the solution soon after the water recycling began. Such colloidal silica could adsorb and transport radionuclides released from breached waste canisters more efficiently than that when radionuclides act alone. The results indicate that silica leaching is a potential problem for the current designs of the Yucca Mountain repository.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-51997-95817en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-51997-95817/en
dc.identifier.urihttp://hdl.handle.net/10919/36780en
dc.publisherVirginia Techen
dc.relation.haspartthesis.pdfen
dc.relation.haspartthesis-old.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectsilica transporten
dc.subjectYucca Mountainen
dc.subjecthigh level nuclear wasteen
dc.titlePost-Closure Silica Transport in the Proposed High Level Radioactive Waste Repository at Yucca Mountain, Nevadaen
dc.typeThesisen
thesis.degree.disciplineGeological Sciencesen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
147.58 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
thesis-old.pdf
Size:
179.62 KB
Format:
Adobe Portable Document Format

Collections