Experimental design and results of 2D dynamic damping of payload motion for cranes
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Cranes, which comprise a significant class of material handling equipment, are basically designed to lift and lower loads. In addition to dynamic loading, cranes are exposed to loads which may be environment specific.
Many crane accidents are due to uncontrolled swaying of the payload resulting in collisions with construction workers or objects. At present, it is left to the operator to apply his/her skills in controlling this uncontrolled swaying. If the controlling is automated and computer controlled, the effect of human errors and limitations can be minimized. The control of this sway will thus greatly improve safety and significantly enhance productivity.
The control strategy in the present thesis is based on applying appropriate, periodic balancing forces and moments to the crane cable to dampen the oscillation. The present thesis presents a discussion on the experimental methods attempted before the development of an automated control.