Effect of Surface Chemistry and Young's Modulus on the Surface Motility of the Bacterium Pseudomonas Aeruginosa

TR Number

Date

2020-01-30

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This study demonstrates that the surface motility of the bacterium Pseudomonas aeruginosa is dependent on the surface chemistry of the underlying substrate. In particular, cells on hydrophobic polydimethylsiloxane (PDMS) have a speed that is on average 38% greater than on hydrophilic PDMS. These results were obtained using time-lapse microscopy of bacteria exposed to continuously flowing tryptic soy broth growth medium at 37 ⁰C. Not only are the mean speeds different, the distributions of speeds are also different: on the hydrophobic substrate, a smaller proportion of bacteria move by less than about one body-length (~3 µm) in 60 minutes. In addition, the surface chemistry affects the orientation of the cells: there is a greater fraction of "walking" bacteria on the hydrophobic surface. Sensitivity to the substrate surface chemistry occurs despite the presence of a complex mix of substances in the growth medium and offers hope that surface chemistry can be used to tune motility and the progression to biofilm formation. Additionally, the effect of reducing the near-surface Young's modulus of the PDMS from 7000 to 70 kPA is investigated. For the lower modulus material, there is an increase in the likelihood of a bacterium executing sudden, high angle turns. This is evident in images with a framerate of one frame per 0.22s. However, the impact of these turns is averaged out over longer times such that the mean speed over periods of more than about one minute is the same for bacteria on both the high and the low modulus materials. Consequently, except over very short time intervals, Young's modulus in the surface region is not effective as a means of modulating motile behavior.

Description

Keywords

Biofilm, bacteria, Pseudomonas aeruginosa, surface chemistry, hydrophilicity, wettability, Young's modulus, stiffness

Citation

Collections