Massively Parallel Hidden Markov Models for Wireless Applications
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Cognitive radio is a growing field in communications which allows a radio to automatically configure its transmission or reception properties in order to reduce interference, provide better quality of service, or allow for more users in a given spectrum. Such processes require several complex features that are currently being utilized in cognitive radio. Two such features, spectrum sensing and identification, have been implemented in numerous ways, however, they generally suffer from high computational complexity. Additionally, Hidden Markov Models (HMMs) are a widely used mathematical modeling tool used in various fields of engineering and sciences. In electrical and computer engineering, it is used in several areas, including speech recognition, handwriting recognition, artificial intelligence, queuing theory, and are used to model fading in communication channels.
The research presented in this thesis proposes a new approach to spectrum identification using a parallel implementation of Hidden Markov Models. Algorithms involving HMMs are usually implemented in the traditional serial manner, which have prohibitively long runtimes. In this work, we study their use in parallel implementations and compare our approach to traditional serial implementations. Timing and power measurements are taken and used to show that the parallel implementation can achieve well over 100Ã speedup in certain situations. To demonstrate the utility of this new parallel algorithm using graphics processing units (GPUs), a new method for signal identification is proposed for both serial and parallel implementations using HMMs. The method achieved high recognition at -10 dB Eb/N0. HMMs can benefit from parallel implementation in certain circumstances, specifically, in models that have many states or when multiple models are used in conjunction.