Multi-resolution in architecture as a design driver for additive manufacturing applications
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Additive manufacturing is evolving toward more sophisticated territory for architects and designers, mainly through the increased use of scripting tools. Recognizing this, we present a design and fabrication pipeline comprised of a class of techniques for fabrication and methods of design through discrete computational models. These support a process responsive to varied design intents: this structured workflow expands the design and fabrication space of any input shape, without having to explicitly deal with the complexity of discrete models beforehand. We discuss a multi-resolution-based methodology that incorporates discrete computational methods, spatial additive manufacturing with both robotic and commercial three-dimensional printers, as well as, a free-oriented technique. Finally, we explore the impact of computational power on design outcome, examining in-depth the concept of resolution as a design driver.