An affine deformation of the quantum cohomology ring of flag manifolds and periodic Toda lattice

dc.contributor.authorMare, A.-L.en
dc.contributor.authorMihalcea, L. C.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2017-01-02T18:36:26Zen
dc.date.available2017-01-02T18:36:26Zen
dc.date.issued2016-06-23en
dc.description.abstractConsider the generalized flag manifold $G/B$ and the corresponding affine flag manifold $\mathcal{Fl}_G$. In this paper we use curve neighborhoods for Schubert varieties in $\mathcal{Fl}_G$ to construct certain affine Gromov-Witten invariants of $\mathcal{Fl}_G$, and to obtain a family of "affine quantum Chevalley" operators $\Lambda_0, \ldots, \Lambda_n$ indexed by the simple roots in the affine root system of $G$. These operators act on the cohomology ring $\mathrm{H}^*(\mathcal{Fl}_G)$ with coefficients in $\mathbb{Z}[q_0, \ldots,q_n]$. By analyzing commutativity and invariance properties of these operators we deduce the existence of two quantum cohomology rings, which satisfy properties conjectured earlier by Guest and Otofuji for $G= \mathrm{SL}_n(\mathbb{C})$. The first quantum ring is a deformation of the subalgebra of $\mathrm{H}^*(\mathcal{Fl}_G)$ generated by divisors. The second ring, denoted $\mathrm{QH}^*_{\mathrm{af}}(G/B)$, deforms the ordinary quantum cohomology ring $\mathrm{QH}^*(G/B)$ by adding an affine quantum parameter $q_0$. We prove that $\mathrm{QH}^*_{\mathrm{af}}(G/B)$ is a Frobenius algebra, and that the new quantum product determines a flat Dubrovin connection. Further, we develop an analogue of Givental and Kim formalism for this ring and we deduce a presentation of $\mathrm{QH}^*_{\mathrm{af}}(G/B)$ by generators and relations. The ideal of relations is generated by the integrals of motion for the periodic Toda lattice associated to the dual of the extended Dynkin diagram of $G$.en
dc.description.notesv3: we strengthen the main result so it holds across all Lie typesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/73919en
dc.language.isoenen
dc.relation.urihttp://arxiv.org/abs/1409.3587v3en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectmath.AGen
dc.subjectmath.COen
dc.subjectmath.QAen
dc.subject14N35 (Primary)en
dc.subject14M15en
dc.subject17B67en
dc.subject37K10en
dc.subject37N20 (Secondary)en
dc.titleAn affine deformation of the quantum cohomology ring of flag manifolds and periodic Toda latticeen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Mathematicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1409.3587v3.pdf
Size:
748.04 KB
Format:
Adobe Portable Document Format
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: