Using selected acaricides to manipulate Tetranychus urticae Koch populations in order to enhance biological control provided by phytoseiid mites


TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


The twospotted spider mite, Tetranychus urticae Koch, is a serious pest of many ornamental plants (Johnson and Lyon, 1991). Pesticide resistance, the high cost of pesticides and loss of production time have raised interest by growers to introduce predatory phytoseiid mites to manage twospotted spider mites and reduce their need for acaricide applications (Sabelis, 1981). The predatory mite Phytoseiulus persimilis Athias-Henriot has been used successfully in integrated pest management programs for T. urticae suppression. Despite the success of P. persimilis in reducing populations of T. urticae, acaricide applications may still necessary due to limitations associated with the effectiveness of P. persimilis introductions. The objectives of this study were to;

  1. Measure the effects of acaricides on the density and age structure of T. urticae populations.
  2. Determine the compatibility of acaricides in an IPM program by measuring the toxicity of residues to P. persimilis and T. urticae adults.
  3. Study the feeding behavior of P. persimilis on T. urticae.
  4. Measure the effects of combinations of acaricides followed by release of P. persimilis on T. urticae populations using greenhouse trials.

The effects of ten acaricides on T. urticae populations were measured on infested Buddleia x davidii 'White Profusion' cuttings. Acaricides did not alter age structure in predictable manner. Initial analysis of results demonstrates that cuttings treated with acaricides had age structures that were different from control treatments. However, these differences were not distinguishable from natural fluctuations in the age structure. Chlorfenapyr may have changed the age structure of T. urticae. Azadirachtin, pyridaben and spinosad did not suppress T. urticae populations at the rates and formulations tested in this trial. Abamectin, bifenthrin, chlorfenapyr, Gowan 1725,oil and neem oil suppressed T. urticae populations. Hexythiazox suppressed T. urticae populations but these results were not seen until two weeks after application.

The effects of acaricide residues were tested on adult P. persimilis and T. urticae 1, 3, 7, and 14 days after application using a leaf disk system. Abamectin, Gowan 1725, hexythiazox, horticultural oil, neem oil, pyridaben and spionsad were not toxic to P. persimilis adults while bifenthrin and chlorfenapyr residues were toxic to P. persimilis. Tetranychus urticae mortality from chlorfenapyr residues was significantly greater than the control 1,3,7 and 14 days after application. Tetranychus urticae mortality from bifenthrin and abamectin residues was significantly greater than the control 3, 7, and 14 days after application. Tetranychus urticae mortality caused by Gowan 1725, horticultural oil, and neem oil residues was significantly greater than the control 1 day after application, while mortality from hexythiazox and spinosad residues was not significantly greater than the control at any of the times tested in this study.

Phytoseiulus persimilis feeding behavior studies examining life stage preference tests and functional response studies were conducted on bean leaf disks. We found P. persimilis functional response to be a type II response for both eggs and adults with handling times of 0.079 hours for eggs and 3.399 hours for adults.

The effects of a combination of acaricides followed by release of P. persimilis on T. urticae populations was tested using greenhouse studies conducted on infested Buddleia plants. In the first trial, severe plant damage occurred despite a reduction in the mean number of mites per leaf in treatments with oil+ predator treatments 7 days after release. Results from the second greenhouse trial produced plants with less visual damage compared to those in the first greenhouse trial. Treatments with predators alone and predators + acaricides produced similar results. However, treatments with predators had a mean numbers of mites per leaf that were significantly less than treatments with acaricides alone. The results demonstrate that the acaricides tested in the second greenhouse trial allowed the predators to provide suppression of T. urticae populations. A high release rate was used in the second greenhouse trial and lower release rates as well as different acaricide predator combinations need be tested to explore the possibility of new management techniques.

Our results suggest that the number of pest mites present in the crop may be the most important factor affecting the success of biological control with predators. Combinations of oil applications followed by introduction of P. persimlis 3 days after release provided suppression of T. urticae populations in a meaningful time frame. I was not able to shape the age structure of T. urticae populations in a predictable manner with acaricide applications. Phytoseiulus persimilis does not have a prey-stage preference when feeding on T.urticae, but the shorter handling time for eggs may indicate that they are better able to suppress populations with higher proportions of eggs. However, we cannot determine if P. persimilis can keep T. urticae populations composed of predominately of eggs below threshold levels because our greenhouse trials did not test this hypothesis. Phytoseiulus persimilis feeding on adult T. urticae may suppress T. urticae populations below threshold levels because a reduction in the number of adults will lead to a reduction in the number of T. urticae eggs deposited on a plant. Our research suggests that abamectin and oil are two acaricides that would be less detrimental to the survival of P. persimilis. Additional greenhouse trials with compatible acaricides should be conducted as well as research on the threshold density of T. urticae that will allow P. persimilis to provide adequate control.



Tetranychus urticae, ornamental plants, acaricides, Phytoseiulus persimilis, Integrated Pest Management, biological control