Estimation of Global Illumination using Cycle-Consistent Adversarial Networks
dc.contributor.author | Oh, Junho | en |
dc.contributor.author | Abbott, A. Lynn | en |
dc.date.accessioned | 2025-03-05T15:31:45Z | en |
dc.date.available | 2025-03-05T15:31:45Z | en |
dc.date.issued | 2024-10-15 | en |
dc.description.abstract | Synthesis of realistic virtual environments requires careful rendering of light and shadows, a task often bottle-necked by the high computational cost of global illumination (GI) techniques. This paper introduces a new GI approach that improves computational efficiency without a significant reduction in image quality. The proposed system transforms initial direct-illumination renderings into globally illuminated representations by incorporating a Cycle-Consistent Adversarial Network (CycleGAN). Our CycleGAN-based approach has demonstrated superior performance over the Pix2Pix model according to the LPIPS metric, which emphasizes perceptual similarity. To facilitate such comparisons, we have created a novel dataset (to be shared with the research community) that provides in-game images that were obtained with and without GI rendering. This work aims to advance real-time GI estimation without the need for costly, specialized computational hardware. Our work and the dataset are made publicly available at https://github.com/junhofive/CycleGAN-Illumination. | en |
dc.description.notes | Yes, full paper (Peer reviewed?) | en |
dc.format.extent | Pages 73-86 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1007/978-3-031-77392-1_6 | en |
dc.identifier.eissn | 1611-3349 | en |
dc.identifier.issn | 0302-9743 | en |
dc.identifier.orcid | Abbott, Amos [0000-0003-3850-6771] | en |
dc.identifier.uri | https://hdl.handle.net/10919/124800 | en |
dc.identifier.volume | 15046 | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Virtual Reality | en |
dc.subject | Video Games | en |
dc.subject | Graphics | en |
dc.subject | Lighting | en |
dc.subject | Global Illumination | en |
dc.subject | GAN | en |
dc.subject | CycleGAN | en |
dc.title | Estimation of Global Illumination using Cycle-Consistent Adversarial Networks | en |
dc.title.serial | Lecture Notes in Computer Science | en |
dc.type | Conference proceeding | en |
dc.type.dcmitype | Text | en |
pubs.organisational-group | Virginia Tech | en |
pubs.organisational-group | Virginia Tech/Engineering | en |
pubs.organisational-group | Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Engineering/COE T&R Faculty | en |