Granular Composite with Addressable and Tunable Stiffness
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
An integral part in the field of soft robotics is the ability to tune material stiffness. This adaptability is inspired from the natural ability of organisms to alter their stiffness to perform various tasks. The most common approach to mimic this ability is through granular jamming, where a granular material switches between fluid and solid-like states based on density alterations caused by vacuum pressure. In this thesis, a cuboid composite material is introduced, containing internal cylindrical chambers arranged in distinct matrix configurations (2x2, 3x3, and 4x4). A custom-designed pneumatic system enables precise control over this transition, allowing for selective modulation of stiffness across different regions of the material by applying differing pressures to specific regions of the composite material. This approach not only allows for rapid changes in stiffness, but enables stiffness to be adjusted uniformly throughout the material or localized to specific areas. This approach also allows for predictive modeling of granular composites to better understand its mechanical response under differential pressures.