VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Directional Airflow for HVAC Systems

Files

TR Number

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Directional airflow has been utilized to enable targeted air conditioning in cars and airplanes for many years, where the occupants could adjust the direction of flow. In the building sector however, HVAC systems are usually equipped with stationary diffusors that can only supply the air either in the form of diffusion or with fixed direction to the room in which they have been installed. In the present thesis, the possibility of adopting directional airflow in lieu of the conventional uniform diffusors has been investigated. The potential benefits of such a modification in control capabilities of the HVAC system in terms of improvements in the overall occupant thermal comfort and energy consumption of the HVAC system have been investigated via a simulation study and an experimental study. In the simulation study, an average of 59% per cycle reduction was achieved in the energy consumption. The reduction in the required duration of airflow (proportional to energy consumption) in the experimental study was 64% per cycle. The feasibility of autonomous control of the directional airflow, has been studied in a simulation experiment by utilizing the Reinforcement Learning algorithm which is an artificial intelligence approach that facilitates autonomous control in unknown environments. In order to demonstrate the feasibility of enabling the existing HVAC systems to control the direction of airflow, a device (called active diffusor) was designed and prototyped. The active diffusor successfully replaced the existing uniform diffusor and was able to effectively target the occupant positions by accurately directing the airflow jet to the desired positions.

Description

Keywords

HVAC, Thermal Comfort, Reinforcement Learning, Building Energy Consumption

Citation

Collections