VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

The Design and Construction of a High Bandwidth Proportional Fuel Injection System for Liquid Fuel Active Combustion Control

TR Number

Date

2001-08-21

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This last decade experienced a sudden increase of interest in the control of thermo-acoustic instabilities, in particular through the use of fuel modulation techniques. The primary goal of this research was to design, construct and characterize a high bandwidth proportional fuel injection system, which could be used to study the effect of specific levels of fuel modulation on the combustion process and the reduction of thermo-acoustic instabilities. A fuel injection system, incorporating the use of a closed loop piston and check valve, was designed to modulate the primary fuel supply of an atmospheric liquid-fueled swirl stabilized combustor operating at a mean volumetric fuel flow rate of 0.4 GPH. The ability of the fuel injection system to modulate the fuel was examined by measuring the fuel line pressure and the flow rate produced during operation. The authority of this modulation over the combustion process was investigated by examining the effect of fuel modulation on the combustor pressure and the heat release of the flame. Sinusoidal operation of the fuel injection system demonstrated: a bandwidth greater that 800 Hz, significant open loop authority (averaging 12 dB) with regards to the combustor pressure, significant open loop authority (averaging 33 dB) with regards to the unsteady heat release rate and an approximate 8 dB reduction of the combustor pressure oscillation present at 100 Hz, using a phase shift controller. It is possible to scale the closed loop piston and check valve configuration used to create the fuel injection system discussed in this work to realistic combustor operating conditions for further active combustion control studies.

Description

Keywords

Thermo-acoustic Instabilities, Proportional Fuel Injection, Piezo-ceramic actuator, Fuel Modulation, Active Combustion Control

Citation

Collections