A Cloud-Based Visual Simulation Environment for Traffic Networks

TR Number

Date

2018-06-19

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Cloud-based Integrated Development Environments (IDEs) are highly complex systems compared to stand-alone IDEs that are installed on client devices. Today, the visual simulation environments developed as services on the cloud can offer similar features as client-based IDEs thanks to the advancements to the cloud technologies. However, most of the existing visual simulation tools are developed for client-based systems. Moving towards the cloud for visual simulation environments can provide better collaboration for simulation developers, easy access to the software, and less client hardware dependency. Proper guidance for the development of visual simulation tools can help researchers to develop their tools as a service on the cloud. This thesis presents a Cloud-based visuAl simulatioN enVironment for trAffic networkS (CANVAS), providing a framework that tackles challenges on the cloud-based visual simulation tools. CANVAS offers a set of tools for the composition and visualization of simulation models for the traffic network problem domain. CANVAS uses an asynchronous visualization protocol with efficient resource utilization on the server, enabling concurrent usage of the IDE. The simulation is executed on the server while the visualization is processed on the client-device within web browsers enabling execution-heavy simulations to thin clients. The component-based architecture of CANVAS offers a fully decoupled system that provides easier development and maintenance. The architecture can be used for the development of other cloud-based visual simulation IDEs. The CANVAS design and asynchronous visualization protocol show that advanced visualization capabilities can be provided to the client without depending on the client hardware.

Description

Keywords

Cloud-based visual simulation, integrated development environment, modeling and simulation, web-based visual simulation

Citation

Collections