Renormalization Group: Applications in Statistical Physics

dc.contributor.authorTäuber, Uwe C.en
dc.contributor.departmentPhysicsen
dc.coverage.spatialStyria, AUSTRIAen
dc.date.accessioned2016-09-30T13:20:07Zen
dc.date.available2016-09-30T13:20:07Zen
dc.date.issued2012-07-01en
dc.description.abstractThese notes aim to provide a concise pedagogical introduction to some important applications of the renormalization group in statistical physics. After briefly reviewing the scaling approach and Ginzburg–Landau theory for critical phenomena near continuous phase transitions in thermal equilibrium, Wilson’s momentum shell renormalization group method is presented, and the critical exponents for the scalar Φ<sup>4</sup> model are determined to first order in a dimensional expansion about the upper critical dimension d<sub>c</sub> = 4. Subsequently, the physically equivalent but technically more versatile field-theoretic formulation of the perturbational renormalization group for static critical phenomena is described. It is explained how the emergence of scale invariance connects ultraviolet divergences to infrared singularities, and the renormalization group equation is employed to compute the critical exponents for the O(n)-symmetric Landau–Ginzburg–Wilson theory to lowest non-trivial order in the ϵ expansion. The second part of this overview is devoted to field theory representations of non-linear stochastic dynamical systems, and the application of renormalization group tools to critical dynamics. Dynamic critical phenomena in systems near equilibrium are efficiently captured through Langevin stochastic equations of motion, and their mapping onto the Janssen–De Dominicis response functional, as exemplified by the field-theoretic treatment of purely relaxational models with non-conserved (model A) and conserved order parameter (model B). As examples for other universality classes, the Langevin description and scaling exponents for isotropic ferromagnets at the critical point (model J) and for driven diffusive non-equilibrium systems are discussed. Finally, an outlook is presented to scale-invariant phenomena and non-equilibrium phase transitions in interacting particle systems. It is shown how the stochastic master equation associated with chemical reactions or population dynamics models can be mapped onto imaginary-time, non-Hermitian “quantum” mechanics. In the continuum limit, this Doi–Peliti Hamiltonian is in turn represented through a coherent-state path integral action, which allows an efficient and powerful renormalization group analysis of, e.g., diffusion-limited annihilation processes, and of phase transitions from active to inactive, absorbing states.en
dc.description.versionPublished versionen
dc.format.extent7 - 34 (28) page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1016/j.nuclphysbps.2012.06.002en
dc.identifier.issn0920-5632en
dc.identifier.urihttp://hdl.handle.net/10919/73132en
dc.identifier.volume228en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000308379200002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPhysics, Particles & Fieldsen
dc.subjectPhysicsen
dc.subjectrenormalization groupen
dc.subjectcritical phenomenaen
dc.subjectcritical dynamicsen
dc.subjectdriven diffusive systemsen
dc.subjectdiffusion-limited chemical reactionsen
dc.subjectnon-equilibrium phase transitionsen
dc.subjectFIELD-THEORYen
dc.subjectPHASE-TRANSITIONSen
dc.subjectCRITICAL-DYNAMICSen
dc.titleRenormalization Group: Applications in Statistical Physicsen
dc.title.serialNuclear Physics B-Proceedings Supplementsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherProceedings Paperen
dc.type.otherMeetingen
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1112.1375v1.pdf
Size:
479.88 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: