Development of Real Time Self Driving Software for Wheeled Robot with UI based Navigation

TR Number

Date

2020-08-26

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Autonomous Vehicles are complex modular systems with various inter-dependent safety critical modules, the failure of which leads to failure of the overall system. The Localization system, which estimates the pose of the vehicle in the global coordinate frame with respect to a map, has a drift in error, when operated only based on data from proprioceptive sensors. Current solutions to the problem are computationally heavy SLAM algorithms. An alternate system is proposed in the thesis which eliminates the drift by resetting the global coordinate frame to the local frame at every motion planning update. The system replaces the mission planner with a user interface(UI) onto which the User provides local navigation inputs, thus eliminating the need for maintenance of a Global frame. The User Input is considered in the decision framework of the behavioral planner, which selects a safe and legal maneuver for the vehicle to follow. The path and trajectory planners generate a trajectory to accomplish the maneuver and the controller follows the trajectory until the next motion planning update. A prototype of the system has been built on a wheeled robot and tested for the feasibility of continuous operation in Autonomous Vehicles.

Description

Keywords

SLAM, Localization, Motion Planning, Perception, Autonomous Vehicles

Citation

Collections