Thermal Property Determination Using Optimization of One-side Known Radiant Exposure

dc.contributor.authorShorten, Brock Alexanderen
dc.contributor.committeechairLattimer, Brian Y.en
dc.contributor.committeechairCase, Scott W.en
dc.contributor.committeememberMeadows, Josephen
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2024-06-05T08:00:30Zen
dc.date.available2024-06-05T08:00:30Zen
dc.date.issued2024-06-04en
dc.description.abstractStructural applications, including aircraft, ships, and offshore oil drilling platforms, have witnessed a surge in composite material usage. However, exposure to elevated temperatures poses a significant risk to these materials, especially in scenarios such as fires and high-temperature exhaust gas impingement. Despite limited or no visible damage, composite properties can undergo significant degradation, leading to potential in-service failures and jeopardizing operational safety and integrity. It was previously determined that the accuracy of the equipment and methodology used for measuring elevated temperature thermal properties, particularly in predicting composite material thermal properties could not meet the necessary precision. Using an inverse analysis technique to solve for the thermal conductivity and specific heat capacity, the thermal properties of composite materials can be determined. These thermal properties can then be used in a rapid heat damage assessment and failure prediction tool that can be updated based on additional data provided during inspection which takes into account material state changes and damage development due to the elevated temperature exposure and provides a way to incorporate those changes into subsequent structural analyses.en
dc.description.abstractgeneralComposite materials are great for structural usage in a wide variety of endeavors. The problem with them is that when exposed to high temperatures, the composite materials properties can change. This can cause failures from seemingly good material which can cause serious bodily harm or even death. My research aims to help bolster the safety and integrity of composite material structures by providing a reliable way to determine their thermal properties. With the thermal properties known, development of a tool that can predict composite material failures which can take into account changes in the material due to thermal damage.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:40873en
dc.identifier.urihttps://hdl.handle.net/10919/119269en
dc.language.isoenen
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectThermal Propertiesen
dc.subjectRadiant Exposureen
dc.subjectCompositesen
dc.subjectOptimizationen
dc.titleThermal Property Determination Using Optimization of One-side Known Radiant Exposureen
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shorten_BA_T_2024.pdf
Size:
3.82 MB
Format:
Adobe Portable Document Format

Collections