Uptake and Economic Value of Macro- and Micronutrient Minerals in Wheat Residue

dc.contributor.authorAdams, Curtis B.en
dc.contributor.authorRogers, Christopher W.en
dc.contributor.authorMarshall, Juliet M.en
dc.contributor.authorHatzenbuehler, Patricken
dc.contributor.authorWalsh, Olga S.en
dc.contributor.authorThurgood, Garretten
dc.contributor.authorDari, Biswanathen
dc.contributor.authorLoomis, Granten
dc.contributor.authorTarkalson, David D.en
dc.date.accessioned2024-08-29T11:46:34Zen
dc.date.available2024-08-29T11:46:34Zen
dc.date.issued2024-08-15en
dc.date.updated2024-08-28T13:59:41Zen
dc.description.abstractWheat (<i>Triticum aestivum,</i> L.) producers have the choice to retain or remove residue from the cropping system following grain harvest. In the U.S. Pacific Northwest and other regions, wheat residue is often sold to increase operational profitability, especially from higher-yielding systems. But there are several benefits to retaining residue, including recycling of mineral nutrients contained therein, though this is understudied. Therefore, the primary objectives of this research were to collect and analyze a large and diverse dataset on wheat residue nutrient uptake (N, P, K, Ca, Mg, S, Fe, Zn, Mn, Cu), develop tools to estimate nutrient amounts in residue, and make economic estimates of the fertilizer replacement value of those nutrients. This was accomplished by conducting replicated variety trials on five classes of wheat across many Pacific Northwest sites over two years, then collecting and analyzing data on wheat residue biomass, residue nutrient concentrations, and grain yield. The results showed that wheat residue contained a significant amount of nutrients, but was particularly concentrated in K. Production environment had the most substantial effect on residue mineral uptake amounts, due to site differences in yield and soil nutrient availability. To enable simple estimation of residue nutrient uptake across a broad range of wheat production levels, two estimation tools are presented herein. Economic analysis showed the substantial monetary value of residual nutrients. For example, in a high-yielding wheat crop (9 Mg ha<sup>&minus;1</sup>), the average fertilizer replacement value of just residue N, P, K, and S was similar to the entire fertilizer budget to grow the crop (~$211 vs. $205 ha<sup>&minus;1</sup>), not considering micronutrients in the residue or any nutrients removed through grain harvest. In making residue management decisions, wheat producers should consider the tradeoff between the immediate economic gains of residue sale and the multifaceted benefits of residue retention, including savings on future nutrient costs.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationAdams, C.B.; Rogers, C.W.; Marshall, J.M.; Hatzenbuehler, P.; Walsh, O.S.; Thurgood, G.; Dari, B.; Loomis, G.; Tarkalson, D.D. Uptake and Economic Value of Macro- and Micronutrient Minerals in Wheat Residue. Agronomy 2024, 14, 1795.en
dc.identifier.doihttps://doi.org/10.3390/agronomy14081795en
dc.identifier.urihttps://hdl.handle.net/10919/121029en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectfertilizeren
dc.subjectnutrientsen
dc.subjectsmall grainsen
dc.subjectstrawen
dc.subjectresidueen
dc.subjectwheaten
dc.titleUptake and Economic Value of Macro- and Micronutrient Minerals in Wheat Residueen
dc.title.serialAgronomyen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
agronomy-14-01795.pdf
Size:
889.59 KB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: