Construction and properties of Box-Behnken designs
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Box-Behnken designs are used to estimate parameters in a second-order response surface model (Box and Behnken, 1960). These designs are formed by combining ideas from incomplete block designs (BIBD or PBIBD) and factorial experiments, specifically 2k full or 2k-1 fractional factorials.
In this dissertation, a more general mathematical formulation of the Box-Behnken method is provided, a general expression for the coefficient matrix in the least squares analysis for estimating the parameters in the second order model is derived, and the properties of Box-Behnken designs with respect to the estimability of all parameters in a second-order model are investigated when 2kfull factorials are used. The results show that for all pure quadratic coefficients to be estimable, the PBIB(m) design has to be chosen such that its incidence matrix is of full rank, and for all mixed quadratic coefficients to be estimable the PBIB(m) design has to be chosen such that the parameters λ₁, λ₂, ...,λm are all greater than zero.
In order to reduce the number of experimental points the use of 2k-1 fractional factorials instead of 2k full factorials is being considered. Of particular interest and importance are separate considerations of fractions of resolutions III, IV, and V. The construction of Box-Behnken designs using such fractions is described and the properties of the designs concerning estimability of regression coefficients are investigated. Using designs obtained from resolution V factorials have the same properties as those using full factorials. Resolutions III and IV designs may lead to non-estimability of certain coefficients and to correlated estimators.
The final topic is concerned with Box-Behnken designs in which treatments are applied to experimental units sequentially in time or space and in which there may exist a linear trend effect. For this situation, one wants to find appropriate run orders for obtaining a linear trend-free Box-Behnken design to remove a linear trend effect so that a simple technique, analysis of variance, instead of a more complicated technique, analysis of covariance, to remove a linear trend effect can be used. Construction methods for linear trend-free Box-Behnken designs are introduced for different values of block size (for the underlying PBIB design) k. For k= 2 or 3, it may not always be possible to find linear trend-free Box-Behnken designs. However, for k ≥ 4 linear trend-free Box-Behnken designs can always be constructed.