Heterogeneous Integration of Epitaxial Ge on Si using AlAs/GaAs Buffer Architecture: Suitability for Low-power Fin Field-Effect Transistors
dc.contributor.author | Hudait, Mantu K. | en |
dc.contributor.author | Clavel, Michael B. | en |
dc.contributor.author | Goley, Patrick S. | en |
dc.contributor.author | Jain, Nikhil | en |
dc.contributor.author | Zhu, Yan | en |
dc.contributor.department | Electrical and Computer Engineering | en |
dc.date.accessioned | 2017-02-10T23:49:51Z | en |
dc.date.available | 2017-02-10T23:49:51Z | en |
dc.date.issued | 2014-11-07 | en |
dc.description.abstract | Germanium-based materials and device architectures have recently appeared as exciting material systems for future low-power nanoscale transistors and photonic devices. Heterogeneous integration of germanium (Ge)-based materials on silicon (Si) using large bandgap buffer architectures could enable the monolithic integration of electronics and photonics. In this paper, we report on the heterogeneous integration of device-quality epitaxial Ge on Si using composite AlAs/GaAs large bandgap buffer, grown by molecular beam epitaxy that is suitable for fabricating low-power fin field-effect transistors required for continuing transistor miniaturization. The superior structural quality of the integrated Ge on Si using AlAs/GaAs was demonstrated using high-resolution x-ray diffraction analysis. High-resolution transmission electron microscopy confirmed relaxed Ge with high crystalline quality and a sharp Ge/AlAs heterointerface. X-ray photoelectron spectroscopy demonstrated a large valence band offset at the Ge/AlAs interface, as compared to Ge/GaAs heterostructure, which is a prerequisite for superior carrier confinement. The temperature-dependent electrical transport properties of the n-type Ge layer demonstrated a Hall mobility of 370 cm2/Vs at 290 K and 457 cm2/Vs at 90 K, which suggests epitaxial Ge grown on Si using an AlAs/ GaAs buffer architecture would be a promising candidate for next-generation high-performance and energy-efficient fin field-effect transistor applications. | en |
dc.description.version | Published version | en |
dc.format.extent | 6 pages | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1038/srep06964 | en |
dc.identifier.issn | 2045-2322 | en |
dc.identifier.uri | http://hdl.handle.net/10919/74992 | en |
dc.identifier.volume | 4 | en |
dc.language.iso | en | en |
dc.publisher | Nature Publishing Group | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000344385100016&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en |
dc.subject | mobility | en |
dc.subject | pmosfet | en |
dc.subject | performance | en |
dc.subject | mosfets | en |
dc.title | Heterogeneous Integration of Epitaxial Ge on Si using AlAs/GaAs Buffer Architecture: Suitability for Low-power Fin Field-Effect Transistors | en |
dc.title.serial | Scientific Reports | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Heterogeneous integration of epitaxial Ge on Si using AlAs/GaAs buffer architecture: suitability for low-power fin field-effect transistors.pdf
- Size:
- 1.77 MB
- Format:
- Adobe Portable Document Format
- Description:
- Publisher's Version
License bundle
1 - 1 of 1
- Name:
- VTUL_Distribution_License_2016_05_09.pdf
- Size:
- 18.09 KB
- Format:
- Adobe Portable Document Format
- Description: