Subsewershed SARS-CoV-2 Wastewater Surveillance and COVID-19 Epidemiology Using Building-Specific Occupancy and Case Data
dc.contributor.author | Cohen, Alasdair | en |
dc.contributor.author | Maile-Moskowitz, Ayella | en |
dc.contributor.author | Grubb, Christopher | en |
dc.contributor.author | Gonzalez, Raul A. | en |
dc.contributor.author | Ceci, Alessandro | en |
dc.contributor.author | Darling, Amanda | en |
dc.contributor.author | Hungerford, Laura L. | en |
dc.contributor.author | Fricker, Ronald D. Jr. | en |
dc.contributor.author | Finkielstein, Carla V. | en |
dc.contributor.author | Pruden, Amy | en |
dc.contributor.author | Vikesland, Peter J. | en |
dc.date.accessioned | 2022-10-03T12:26:04Z | en |
dc.date.available | 2022-10-03T12:26:04Z | en |
dc.date.issued | 2022-05-01 | en |
dc.date.updated | 2022-10-02T23:14:51Z | en |
dc.description.abstract | To evaluate the use of wastewater-based surveillance and epidemiology to monitor and predict SARS-CoV-2 virus trends, over the 2020-2021 academic year we collected wastewater samples twice weekly from 17 manholes across Virginia Tech's main campus. We used data from external door swipe card readers and student isolation/quarantine status to estimate building-specific occupancy and COVID-19 case counts at a daily resolution. After analyzing 673 wastewater samples using reverse transcription quantitative polymerase chain reaction (RT-qPCR), we reanalyzed 329 samples from isolation and nonisolation dormitories and the campus sewage outflow using reverse transcription digital droplet polymerase chain reaction (RT-ddPCR). Population-adjusted viral copy means from isolation dormitory wastewater were 48% and 66% higher than unadjusted viral copy means for N and E genes (1846/100 mL to 2733/100 mL/100 people and 2312/100 mL to 3828/100 mL/100 people, respectively; n = 46). Prespecified analyses with random-effects Poisson regression and dormitory/cluster-robust standard errors showed that the detection of N and E genes were associated with increases of 85% and 99% in the likelihood of COVID-19 cases 8 days later (incident-rate ratio (IRR) = 1.845, p = 0.013 and IRR = 1.994, p = 0.007, respectively; n = 215), and one-log increases in swipe card normalized viral copies (copies/100 mL/100 people) for N and E were associated with increases of 21% and 27% in the likelihood of observing COVID-19 cases 8 days following sample collection (IRR = 1.206, p < 0.001, n = 211 for N; IRR = 1.265, p < 0.001, n = 211 for E). One-log increases in swipe normalized copies were also associated with 40% and 43% increases in the likelihood of observing COVID-19 cases 5 days after sample collection (IRR = 1.403, p = 0.002, n = 212 for N; IRR = 1.426, p < 0.001, n = 212 for E). Our findings highlight the use of building-specific occupancy data and add to the evidence for the potential of wastewater-based epidemiology to predict COVID-19 trends at subsewershed scales. | en |
dc.description.version | Accepted version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1021/acsestwater.2c00059 | en |
dc.identifier.eissn | 2690-0637 | en |
dc.identifier.issn | 2690-0637 | en |
dc.identifier.orcid | Pruden-Bagchi, Amy [0000-0002-3191-6244] | en |
dc.identifier.orcid | Vikesland, Peter [0000-0003-2654-5132] | en |
dc.identifier.orcid | Cohen, Alasdair [0000-0002-9917-8647] | en |
dc.identifier.orcid | Finkielstein, Carla [0000-0002-8417-4643] | en |
dc.identifier.other | PMC9128018 | en |
dc.identifier.uri | http://hdl.handle.net/10919/112041 | en |
dc.language.iso | en | en |
dc.publisher | American Chemical Society | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | Subsewershed SARS-CoV-2 Wastewater Surveillance and COVID-19 Epidemiology Using Building-Specific Occupancy and Case Data | en |
dc.title.serial | ACS Environmental Science and Technology Water | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Journal Article | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/Biological Sciences | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Civil & Environmental Engineering | en |
pubs.organisational-group | /Virginia Tech/Veterinary Medicine | en |
pubs.organisational-group | /Virginia Tech/Veterinary Medicine/Population Health Sciences | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Fralin Life Sciences | en |
pubs.organisational-group | /Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science/COS T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Veterinary Medicine/CVM T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Fralin Life Sciences/Durelle Scott | en |
pubs.organisational-group | /Virginia Tech/VT Carilion School of Medicine | en |
pubs.organisational-group | /Virginia Tech/VT Carilion School of Medicine/Psychiatry and Behavioral Medicine | en |
pubs.organisational-group | /Virginia Tech/VT Carilion School of Medicine/Psychiatry and Behavioral Medicine/Secondary Appointment-Psychiatry and Behavioral Medicine | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- ES&T_2022.pdf
- Size:
- 7.59 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version