VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Investigation of Dynamic Loading for 13.2 MW Downwind Pre-Aligned Rotor

Files

TR Number

Date

2015-06

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale turbines, a downwind rotor concept is considered that uses fixed coning to align the non-circumferential loads for a given steady-state condition. This alignment can be pre-set to eliminate downwind blade moments for a given steady-state condition at rated wind speed and to minimize them for other conditions. The alleviation in downwind dynamic loads may enable a reduced structural blade mass as compared with a conventional upwind rotor. To examine the potential impact of this design, FAST simulations were conducted for a 13.2 MW rated turbine at steady-state conditions for two rotor configurations with similar power outputs: 1) a conventional upwind rotor with three blades and 2) a downwind pre-aligned rotor with two blades. The rotor mass was reduced by approximately 25% for the downwind pre-aligned configuration. In addition, the damage equivalent loads on the blades were reduced more than 60% for the downwind pre-aligned configuration. However, additional work is needed to investigate this concept at turbulent inflow conditions and for extreme events.

Description

Keywords

Citation

Qin, C., Loth, E., Lee, S., & Moriarty, P. (2015, June). Investigation of dynamic loading for 13.2 mw downwind pre-aligned rotor. Paper presented at the North American Wind Energy Academy 2015 Symposium, Blacksburg, VA.