VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

PointMotionNet: Point-Wise Motion Learning for Large-Scale LiDAR Point Clouds Sequences

Files

TR Number

Date

2022-06

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE

Abstract

We propose a point-based spatiotemporal pyramid architecture, called PointMotionNet, to learn motion information from a sequence of large-scale 3D LiDAR point clouds. A core component of PointMotionNet is a novel technique for point-based spatiotemporal convolution, which finds the point correspondences across time by leveraging a time-invariant spatial neighboring space and extracts spatiotemporal features. To validate PointMotionNet, we consider two motion-related tasks: point-based motion prediction and multisweep semantic segmentation. For each task, we design an end-to-end system where PointMotionNet is the core module that learns motion information. We conduct extensive experiments and show that i) for point-based motion prediction, PointMotionNet achieves less than 0.5m mean squared error on Argoverse dataset, which is a significant improvement over existing methods; and ii) for multisweep semantic segmentation, PointMotionNet with a pretrained segmentation backbone outperforms previous SOTA by over 3.3 % mIoU on SemanticKITTI dataset with 25 classes including 6 moving objects.

Description

Keywords

Citation