PointMotionNet: Point-Wise Motion Learning for Large-Scale LiDAR Point Clouds Sequences
dc.contributor.author | Wang, Jun | en |
dc.contributor.author | Li, Xiaolong | en |
dc.contributor.author | Sullivan, Alan | en |
dc.contributor.author | Abbott, A. Lynn | en |
dc.contributor.author | Chen, Siheng | en |
dc.date.accessioned | 2023-02-28T15:40:55Z | en |
dc.date.available | 2023-02-28T15:40:55Z | en |
dc.date.issued | 2022-06 | en |
dc.date.updated | 2023-02-25T19:32:36Z | en |
dc.description.abstract | We propose a point-based spatiotemporal pyramid architecture, called PointMotionNet, to learn motion information from a sequence of large-scale 3D LiDAR point clouds. A core component of PointMotionNet is a novel technique for point-based spatiotemporal convolution, which finds the point correspondences across time by leveraging a time-invariant spatial neighboring space and extracts spatiotemporal features. To validate PointMotionNet, we consider two motion-related tasks: point-based motion prediction and multisweep semantic segmentation. For each task, we design an end-to-end system where PointMotionNet is the core module that learns motion information. We conduct extensive experiments and show that i) for point-based motion prediction, PointMotionNet achieves less than 0.5m mean squared error on Argoverse dataset, which is a significant improvement over existing methods; and ii) for multisweep semantic segmentation, PointMotionNet with a pretrained segmentation backbone outperforms previous SOTA by over 3.3 % mIoU on SemanticKITTI dataset with 25 classes including 6 moving objects. | en |
dc.description.version | Accepted version | en |
dc.format.extent | Pages 4418-4427 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/CVPRW56347.2022.00488 | en |
dc.identifier.eissn | 2160-7516 | en |
dc.identifier.isbn | 9781665487399 | en |
dc.identifier.issn | 2160-7508 | en |
dc.identifier.orcid | Abbott, Amos [0000-0003-3850-6771] | en |
dc.identifier.uri | http://hdl.handle.net/10919/114009 | en |
dc.identifier.volume | 2022-June | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | PointMotionNet: Point-Wise Motion Learning for Large-Scale LiDAR Point Clouds Sequences | en |
dc.title.serial | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops | en |
dc.type | Conference proceeding | en |
dc.type.dcmitype | Text | en |
dc.type.other | Conference Proceeding | en |
pubs.finish-date | 2022-06-20 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.start-date | 2022-06-19 | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Wang_PointMotionNet_Point-Wise_Motion_Learning_for_Large-Scale_LiDAR_Point_Clouds_Sequences_CVPRW_2022_paper.pdf
- Size:
- 9.3 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version