Optimizing Reservoir Computing Architecture for Dynamic Spectrum Sensing Applications

TR Number

Date

2024-04-25

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Spectrum sensing in wireless communications serves as a crucial binary classification tool in cognitive radios, facilitating the detection of available radio spectrums for secondary users, especially in scenarios with high Signal-to-Noise Ratio (SNR). Leveraging Liquid State Machines (LSMs), which emulate spiking neural networks like the ones in the human brain, prove to be highly effective for real-time data monitoring for such temporal tasks. The inherent advantages of LSM-based recurrent neural networks, such as low complexity, high power efficiency, and accuracy, surpass those of traditional deep learning and conventional spectrum sensing methods. The architecture of the liquid state machine processor and its training methods are crucial for the performance of an LSM accelerator. This thesis presents one such LSM-based accelerator that explores novel architectural improvements for LSM hardware. Through the adoption of triplet-based Spike-Timing-Dependent Plasticity (STDP) and various spike encoding schemes on the spectrum dataset within the LSM, we investigate the advantages offered by these proposed techniques compared to traditional LSM models on the FPGA. FPGA boards, known for their power efficiency and low latency, are well-suited for time-critical machine learning applications. The thesis explores these novel onboard learning methods, shares the results of the suggested architectural changes, explains the trade-offs involved, and explores how the improved LSM model's accuracy can benefit different classification tasks. Additionally, we outline the future research directions aimed at further enhancing the accuracy of these models.

Description

Keywords

Reservoir Computing, Liquid State Machines, Machine Learning, Field Programmable Gate Array, Neural Encoding, Triplet STDP, Spectrum Sensing, Neuromorphic Computing

Citation

Collections