VTechWorks is currently accessible only on the VT network (campus, VPN). Elements deposit is now enabled. We are working to restore full access as soon as possible.
 

An experimental simulation of liquid fuel injection into a heated subsonic gas crossflow

TR Number

Date

1982

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Polytechnic Institute and State University

Abstract

In this investigation, an approach to studying hot-flow subsonic cross-stream fuel injection problems with a less complex and less costly cold-flow facility was developed and implemented. An actual ramjet combustion chamber fuel injection problem was proposed where ambient temperature fuel was injected into a heated airstream. This case was transformed through similarity parameters involving injection and freestream properties to a simulated case where a chilled injectant was injected into an ambient subsonic airstream. This task was accomplished through injection of chilled Freon-12 into the Virginia Tech 23 x 23 cm. blow-down wind tunnel at a freestream Mach number of 0.44. The freestream stagnation pressure and temperature were held at 2.5 atm. and 300°K respectively. The resulting spray plume was carefully examined and documented with photographs and droplet measurements. The results showed a clear picture of the mechanisms of jet decomposition and vaporization. Immediately after injection a vapor cloud was formed in the jet plume, which dissipated downstream leaving droplets on the order of 8 to 10 microns in diameter for the conditions examined.

Description

Keywords

Citation

Collections