Effect of Standard Post-harvest Interventions on the Survival and Regrowth of Antibiotic-Resistant Bacteria on Fresh Produce

dc.contributor.authorPulido, Natalie Anneen
dc.contributor.committeechairPonder, Monica A.en
dc.contributor.committeememberPruden, Amyen
dc.contributor.committeememberBoyer, Renee R.en
dc.contributor.departmentFood Science and Technologyen
dc.date.accessioned2018-06-13T06:00:25Zen
dc.date.available2018-06-13T06:00:25Zen
dc.date.issued2016-12-19en
dc.description.abstractRaw vegetables can sometimes be the source of outbreaks of human illness; however the potential for fresh vegetables to serve as a vehicle for antibiotic -resistant bacteria is poorly understood. Antibiotics and antibiotic-resistant bacteria have been shown to persist in manure of animals administered antibiotics, and in compost generated from this manure, where there is the potential for their transfer to produce. The purpose of this study was to determine the survival of antibiotic-resistant bacteria on raw, peeled, carrots after washing with commonly used chemical sanitizers. Multi-drug resistant E. coli O157:H7 and Pseudomonas aeruginosa were inoculated into a compost slurry of composted manure from dairy cattle, with and without prior administration of antibiotics, and used to inoculate carrot surfaces prior to the washing studies. This approach provided defined model antibiotic-resistant pathogens present within a background microbial community simulating potential carry over from manure-derived fertilizer. Carrots (n=3, 25g) were air-dried and stored at 4 °C until washing with tap water, XY-12 (sodium hypochlorite, 50 ppm free chlorine) or Tsunami 100 (peroxyacetic acid/hydrogen peroxide, 40 ppm free paracetic acid), according to manufacturer's directions. A second batch of carrots representing each inoculation x wash condition (n=3) were individually packaged for storage at 2 °C for 1,7, and 14 days, or 10 °C for 7 days and enumerated on those day intervals to recover bacteria from the surfaces of washed carrots. The resulting previously washed and stored carrots were subject to serial dilution and plated onto corresponding agar to enumerate total aerobic bacteria (R2A), aerobic bacteria tolerant or resistant to antibiotics (antibiotic-supplemented R2A), E. coli (Eosin Methylene Blue), and Pseudomonas spp. (Pseudomonas Isolation Agar). In addition, the tetA gene was quantified from the carrot samples as a measure of the effect of sanitizers and storage on an antibiotic resistance gene known to be carried by the inoculated bacteria.Inclusion of sanitizer in the wash water significantly reduced the absolute numbers of inoculated bacteria (E.coli and Pseudomonas) as well as populations of bacteria capable of growth on the R2A media containing cefotaxime (10μg/mL), sulfamethoxazole (100μg/mL), or tetracycline (3μg/mL). Comparable reductions in the inoculated P. aeruginosa resistant to tetracycline (PIA T, 4μg/mL), bacteria resistant to cefotaxime (10μg/mL) and tetracycline (3μg/mL) occurred after washing with XY-12 or Tsunami 100. The sanitizer effectiveness may be bacterial dependent, as evident by larger absolute reductions of the inoculated E. coli (EMB) and bacteria grown on sulfamethoxazole (100μg/mL)-amended plates after washing with Tsunami 100 compared to washing with tap water or XY-12. Re-growth of both the inoculated and native compost-associated bacteria was inhibited by storage at 2 °C, as there were no significant differences in the log CFU/g values on the various media (total aerobic bacteria, bacteria on antibiotic-amended plates, E. coli inoculum, P. aeruginosa inoculum) during the 14-day storage period. However, temperature abuse at 10 °C resulted in significant re-growth of native Pseudomonas, compared to storage at 2 °C. A sanitizer-associated interaction between re-growth and temperature was also observed for bacteria resistant to clindamycin (25μg/mL) and cefotaxime (10μg/mL), with substantial re-growth occurring only on carrots washed with Tsunami 100. There was no significant re-growth of the inoculated E. coli O157:H7 at either temperature. Results indicate that some bacterial populations are reduced by post-harvest washes and that temperature abuse of fresh produce may result in increases in antibiotic-resistant bacterial populations.en
dc.description.abstractgeneralFresh vegetables are frequently washed to remove soil and pests before shipment to suppliers, with the goal of creating a ready-to-eat- product for consumers. The inclusion of a chemical sanitizer in the wash water has the benefit of killing or reducing the number of bacteria in the wash water. Chemical sanitizers also have the potential to reduce spoilage bacteria and human pathogenic bacteria on the vegetable and prevent cross-contamination from one vegetable to another. While the intention of sanitizers is to reduce bacterial numbers in wash water, there can be added benefit of also reducing bacterial numbers on vegetable surfaces. Given the rising problem of antibiotic resistance, in this study we sought to determine the effectiveness of two commonly used wash water sanitizers for reducing antibiotic-resistant bacterial pathogens and other antibiotic-resistant bacteria on carrots. It was not possible to completely eliminate all bacteria on the carrots by washing, a frequent misconception. However, washing in water that included a food-grade sanitizer, Tsunami 100 (peroxyacetic acid/hydrogen peroxide) or XY-12 (sodium hypochlorite), numbers of <i>E.coli</i> and <i>Pseudomonas</i> that had been pre-inoculated on the carrots were reduced. Despite the reduction in numbers after washing, the surviving bacteria on the carrot surfaces grew significantly when stored improperly at warm temperatures (10°C instead of 2 °C). Bacteria that could grow in the presence of antibiotics were reduced by the sanitizer wash and did not re-grow when stored at 2qC. The use of food-grade sanitizers does reduce the numbers of some bacteria on carrots, but it is equally important that consumers store produce at chilled temperatures to prevent re-growth of potentially harmful bacteria.en
dc.description.degreeMaster of Science in Life Sciencesen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:9376en
dc.identifier.urihttp://hdl.handle.net/10919/83528en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectSanitizeren
dc.subjectcarroten
dc.subjectpost-harvesten
dc.subjectwashen
dc.subjectE. colien
dc.subjectPseudomonasen
dc.subjectcomposten
dc.subjectantibiotic resistanceen
dc.subjectantibiotic resistance genesen
dc.titleEffect of Standard Post-harvest Interventions on the Survival and Regrowth of Antibiotic-Resistant Bacteria on Fresh Produceen
dc.typeThesisen
thesis.degree.disciplineFood Science and Technologyen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Science in Life Sciencesen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pulido_NA_T_2016.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format

Collections