VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Label-Free Quantitative Proteomics Analysis in Susceptible and Resistant Brassica napus Cultivars Infected with Xanthomonas campestris pv. campestris

TR Number

Date

2021-01-27

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the main disease of cruciferous vegetables. To characterize the resistance mechanism in the Brassica napusXcc pathosystem, Xcc-responsive proteins in susceptible (cv. Mosa) and resistant (cv. Capitol) cultivars were investigated using gel-free quantitative proteomics and analysis of gene expression. This allowed us to identify 158 and 163 differentially expressed proteins following Xcc infection in cv. Mosa and cv. Capitol, respectively, and to classify them into five major categories including antioxidative systems, proteolysis, photosynthesis, redox, and innate immunity. All proteins involved in protein degradation such as the protease complex, proteasome subunits, and ATP-dependent Clp protease proteolytic subunits, were upregulated only in cv. Mosa, in which higher hydrogen peroxide accumulation concurred with upregulated superoxide dismutase. In cv. Capitol, photosystem II (PS II)-related proteins were downregulated (excepting PS II 22 kDa), whereas the PS I proteins, ATP synthase, and ferredoxin-NADP+ reductase, were upregulated. For redox-related proteins, upregulation of thioredoxin, 2-cys peroxiredoxin, and glutathione S-transferase occurred in cv. Capitol, consistent with higher NADH-, ascorbate-, and glutathione-based reducing potential, whereas the proteins involved in the C2 oxidative cycle and glycolysis were highly activated in cv. Mosa. Most innate immunity-related proteins, including zinc finger domain (ZFD)-containing protein, glycine-rich RNA-binding protein (GRP) and mitochondrial outer membrane porin, were highly enhanced in cv. Capitol, concomitant with enhanced expression of ZFD and GRP genes. Distinguishable differences in the protein profile between the two cultivars deserves higher importance for breeding programs and understanding of disease resistance in the B. napusXcc pathosystem.

Description

Keywords

Brassica napus, proteolysis, photosynthesis-related proteins, redoxins, redox status, Xanthomonas campestris pv. campestris

Citation

Islam, M.T.; Lee, B.-R.; La, V.H.; Bae, D.-W.; Jung, W.-J.; Kim, T.-H. Label-Free Quantitative Proteomics Analysis in Susceptible and Resistant Brassica napus Cultivars Infected with Xanthomonas campestris pv. campestris. Microorganisms 2021, 9, 253.