An advanced neuromorphic accelerator on FPGA for next-G spectrum sensing
dc.contributor.author | Azmine, Muhammad Farhan | en |
dc.contributor.committeechair | Yi, Yang | en |
dc.contributor.committeemember | Ha, Dong | en |
dc.contributor.committeemember | Jones, Creed F. III | en |
dc.contributor.department | Electrical and Computer Engineering | en |
dc.date.accessioned | 2024-05-21T14:55:34Z | en |
dc.date.available | 2024-05-21T14:55:34Z | en |
dc.date.issued | 2024-04-10 | en |
dc.description.abstract | In modern communication systems, it’s important to detect and use available radio frequencies effectively. However, current methods face challenges with complexity and noise interference. We’ve developed a new approach using advanced artificial intelligence (AI) based computing techniques to improve efficiency and accuracy in this process. Our method shows promising results, requiring only minimal additional resources in exchange of improved performance compared to older techniques. | en |
dc.description.abstractgeneral | In modern communication systems, it’s important to detect and use available radio frequencies effectively. However, current methods face challenges with complexity and noise interference. We’ve developed a new approach using advanced artificial intelligence (AI) based computing techniques to improve efficiency and accuracy in this process. Our method shows promising results, requiring only minimal additional resources in exchange of improved performance compared to older techniques. | en |
dc.description.degree | Master of Science | en |
dc.format.medium | ETD | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | https://hdl.handle.net/10919/119039 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.rights | Creative Commons Attribution-NoDerivatives 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | en |
dc.subject | Field Programmable Gate Array | en |
dc.subject | Hardware accelerator | en |
dc.subject | On-Chip learning | en |
dc.subject | Artificial intelligence | en |
dc.subject | Recurrent Neural Network | en |
dc.subject | Spike-Time-Dependent-Plasticity | en |
dc.subject | Cognitive-Radio-Network | en |
dc.subject | Spectrum Sensing | en |
dc.title | An advanced neuromorphic accelerator on FPGA for next-G spectrum sensing | en |
dc.type | Thesis | en |
thesis.degree.discipline | Computer Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |