Analysis of Lightweight Cryptographic Primitives

dc.contributor.authorGeorge, Kiernan Brenten
dc.contributor.committeechairMichaels, Alan J.en
dc.contributor.committeememberBall, Arthur Huguesen
dc.contributor.committeememberGerdes, Ryan M.en
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2022-10-28T06:00:07Zen
dc.date.available2022-10-28T06:00:07Zen
dc.date.issued2021-05-05en
dc.description.abstractInternet-of-Things (IoT) devices have become increasingly popular in the last 10 years, yet also show an acceptance for lack of security due to hardware constraints. The range of sophistication in IoT devices varies substantially depending on the functionality required, so security options need to be flexible. Manufacturers typically either use no security, or lean towards the use of the Advanced Encryption Standard (AES) with a 128-bit key. AES-128 is suitable for the higher end of that IoT device range, but is costly enough in terms of memory, time, and energy consumption that some devices opt to use no security. Short development and a strong drive to market also contribute to a lack in security. Recent work in lightweight cryptography has analyzed the suitability of custom protocols using AES as a comparative baseline. AES outperforms most custom protocols when looking at security, but those analyses fail to take into account block size and future capabilities such as quantum computers. This thesis analyzes lightweight cryptographic primitives that would be suitable for use in IoT devices, helping fill a gap for "good enough" security within the size, weight, and power (SWaP) constraints common to IoT devices. The primitives have not undergone comprehensive cryptanalysis and this thesis attempts to provide a preliminary analysis of confidentiality. The first is a single-stage residue number system (RNS) pseudorandom number generator (PRNG) that was shown in previous publications to produce strong outputs when analyzed with statistical tests like the NIST RNG test suite and DIEHARD. However, through analysis, an intelligent multi-stage conditional probability attack based on the pigeonhole principle was devised to reverse engineer the initial state (key) of a single-stage RNS PRNG. The reverse engineering algorithm is presented and used against an IoT-caliber device to showcase the ability of an attacker to retrieve the initial state. Following, defenses based on intentional noise, time hopping, and code hopping are proposed. Further computation and memory analysis show the proposed defenses are simple in implementation, but increase complexity for an attacker to the point where reverse engineering the PRNG is likely no longer viable. The next primitive proposed is a block cipher combination technique based on Galois Extension Field multiplication. Using any PRNG to produce the pseudorandom stream, the block cipher combination technique generates a variable sized key matrix to encrypt plaintext. Electronic Codebook (ECB) and Cipher Feedback (CFB) modes of operation are discussed. Both system modes are implemented in MATLAB as well as on a Texas Instruments (TI) MSP430FR5994 microcontroller for hardware validation. A series of statistical tests are then run against the simulation results to analyze overall randomness, including NIST and the Law of the Iterated Logarithm; the system passes both. The implementation on hardware is compared against a stream cipher variation and AES-128. The block cipher proposed outperforms AES-128 in terms of computation time and consumption for small block sizes. While not as secure, the cryptosystem is more scalable to block sizes used in IoT devices.en
dc.description.abstractgeneralAn Internet-of-Things (IoT) device is a single-purpose computer that operates with less computing resources and sometimes on battery power. The classification of IoT can range anywhere from motion sensors to a doorbell camera, but IoT devices are used in more than just home automation. The medical and industrial spaces use simple wireless computers for a number of tasks as well. One concern with IoT, given the hardware constraints, is the lack of security. Since messages are often transmitted through a wireless medium, anybody could eavesdrop on what is being communicated if data is not encrypted prior to transmission. Cryptography is the practice of taking any string of data and obfuscating it through a process that only valid parties can reverse. The sophistication of cryptographic systems has increased to the point where IoT manufacturers elect to use no security in many cases because the hardware is not advanced enough to run them efficiently. The Advanced Encryption Standard (AES) is usually the choice for security in the IoT space, but typically only higherend devices can afford to use AES. This thesis focuses on alternative lightweight systems to AES. First, a single-stage residue number system (RNS) pseudorandom number generator (PRNG) is analyzed, which has been proven to generate statistically random outputs in previous publications. PRNGs are a cheap method of producing seemingly random outputs through an algorithm once provided with an initial state known as a seed. An intelligent attack on the PRNG is devised, which is able to reverse engineer the initial state, effectively breaking the random behavior. Three defenses against the attack are then implemented to protect against the reported vulnerability. Following, a block cipher combination technique is presented, using the aforementioned PRNG as the source of randomness. A block cipher is a method of encrypting large chunks of data together, to better obfuscate the output. Using a block cipher is more secure than just using a PRNG for encryption. However, PRNGs are used to generate the key for the proposed block cipher, as they offer a more efficient method of security. The combination technique presented serves to increase the security of PRNGs further. The cipher is shown to perform better on an IoT-caliber device in terms of computation time and energy consumption at smaller block sizes than AES.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:30059en
dc.identifier.urihttp://hdl.handle.net/10919/112304en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectBlock Cipheren
dc.subjectGalois Extension Fielden
dc.subjectPost-Quantum Cryptographyen
dc.subjectPseudorandom Number Generatoren
dc.subjectResidue Number Systemen
dc.titleAnalysis of Lightweight Cryptographic Primitivesen
dc.typeThesisen
thesis.degree.disciplineComputer Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
George_KB_T_2021.pdf
Size:
2.96 MB
Format:
Adobe Portable Document Format

Collections