A GNN-Based QSPR Model for Surfactant Properties

dc.contributor.authorHam, Seokgyunen
dc.contributor.authorWang, Xinen
dc.contributor.authorZhang, Hongweien
dc.contributor.authorLattimer, Brianen
dc.contributor.authorQiao, Ruien
dc.date.accessioned2025-01-08T14:11:56Zen
dc.date.available2025-01-08T14:11:56Zen
dc.date.issued2024-11-19en
dc.date.updated2024-12-27T14:02:05Zen
dc.description.abstractSurfactants are among the most versatile molecules in the chemical industry because they can self-assemble in bulk solutions and at interfaces. Predicting the properties of surfactant solutions, such as their critical micelle concentration (CMC), limiting surface tension (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>&gamma;</mi></mrow><mrow><mi>c</mi><mi>m</mi><mi>c</mi></mrow></msub></mrow></semantics></math></inline-formula>), and maximal packing density (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>&Gamma;</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>) at water&ndash;air interfaces, is essential to their rational design. However, the relationship between surfactant structure and these properties is complex and difficult to predict theoretically. Here, we develop a graph neural network (GNN)-based quantitative structure&ndash;property relationship (QSPR) model to predict the CMC, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>&gamma;</mi></mrow><mrow><mi>c</mi><mi>m</mi><mi>c</mi></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>&Gamma;</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula>. Ninety-two surfactant data points, encompassing all types of surfactants&mdash;anionic, cationic, zwitterionic, and nonionic&mdash;are fed into the model, covering a temperature range of [20&ndash;30 &deg;C], which contributes to its generalization across all surfactant types. We show that our models have high accuracy (R<sup>2</sup> = 0.87 on average in tests) in predicting the three parameters across all types of surfactants. The effectiveness of the QSPR model in capturing the variation of CMC, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>&gamma;</mi></mrow><mrow><mi>c</mi><mi>m</mi><mi>c</mi></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>&Gamma;</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math></inline-formula> with molecular design parameters are carefully assessed. The curated dataset, developed model, and critical assessment of the developed model will contribute to the development of improved surfactants QSPR models and facilitate their rational design for diverse applications.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationHam, S.; Wang, X.; Zhang, H.; Lattimer, B.; Qiao, R. A GNN-Based QSPR Model for Surfactant Properties. Colloids Interfaces 2024, 8, 63.en
dc.identifier.doihttps://doi.org/10.3390/colloids8060063en
dc.identifier.urihttps://hdl.handle.net/10919/123958en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleA GNN-Based QSPR Model for Surfactant Propertiesen
dc.title.serialColloids Interfacesen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
colloids-08-00063.pdf
Size:
8.78 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: