Using L/E Oscillation Probability Distributions

dc.contributor.authorAguilar-Arevalo, A. A.en
dc.contributor.authorBrown, B. C.en
dc.contributor.authorBugel, L.en
dc.contributor.authorCheng, G.en
dc.contributor.authorChurch, E. D.en
dc.contributor.authorConrad, Janet M.en
dc.contributor.authorDharmapalan, R.en
dc.contributor.authorDjurcic, Zelimiren
dc.contributor.authorFinley, D. A.en
dc.contributor.authorFord, R.en
dc.contributor.authorGarcia, F. G.en
dc.contributor.authorGarvey, G. T.en
dc.contributor.authorGrange, J.en
dc.contributor.authorHuelsnitz, W.en
dc.contributor.authorIgnarra, C. M.en
dc.contributor.authorImlay, R.en
dc.contributor.authorJohnson, R. A.en
dc.contributor.authorKaragiorgi, Georgia S.en
dc.contributor.authorKatori, T.en
dc.contributor.authorKobilarcik, T.en
dc.contributor.authorLouis, W. C.en
dc.contributor.authorMariani, Camilloen
dc.contributor.authorMarsh, W.en
dc.contributor.authorMills, G. B.en
dc.contributor.authorMirabal, J.en
dc.contributor.authorMoore, C. D.en
dc.contributor.authorMousseau, J.en
dc.contributor.authorNienaber, P.en
dc.contributor.authorOsmanov, B.en
dc.contributor.authorPavlovic, Z.en
dc.contributor.authorPerevalov, D.en
dc.contributor.authorPolly, C. C.en
dc.contributor.authorRay, H.en
dc.contributor.authorRoe, B. P.en
dc.contributor.authorRussell, A. D.en
dc.contributor.authorShaevitz, Marjorie Hansenen
dc.contributor.authorSpitz, Joshuaen
dc.contributor.authorStancu, Ionen
dc.contributor.authorTayloe, R.en
dc.contributor.authorWater, R. G. V. D.en
dc.contributor.authorWhite, D. H.en
dc.contributor.authorWickremasinghe, D. A.en
dc.contributor.authorZeller, Geralyn P.en
dc.contributor.authorZimmerman, E. D.en
dc.contributor.departmentPhysicsen
dc.date.accessioned2018-01-10T01:40:30Zen
dc.date.available2018-01-10T01:40:30Zen
dc.date.issued2014-07-11en
dc.description.abstractThis paper explores the use of <i>L/E</i> oscillation probability distributions to compare experimental measurements and to evaluate oscillation models. In this case, <i>L</i> is the distance of neutrino travel and <i>E</i> is a measure of the interacting neutrino's energy. While comparisons using allowed and excluded regions for oscillation model parameters are likely the only rigorous method for these comparisons, the <i>L/E</i> distributions are shown to give qualitative information on the agreement of an experiment's data with a simple two-neutrino oscillation model. In more detail, this paper also outlines how the <i>L/E</i> distributions can be best calculated and used for model comparisons. Specifically, the paper presents the <i>L/E</i> data points for the final MiniBooNE data samples and, in the Appendix, explains and corrects the mistaken analysis published by the ICARUS collaboration.en
dc.identifier.orcidMariani, C [0000-0003-3284-4681]en
dc.identifier.urihttp://hdl.handle.net/10919/81658en
dc.relation.urihttp://arxiv.org/abs/1407.3304v1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjecthep-exen
dc.subjecthep-phen
dc.subjectnucl-exen
dc.titleUsing L/E Oscillation Probability Distributionsen
dc.typeArticle - Refereeden
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1407.3304v1.pdf
Size:
848.97 KB
Format:
Adobe Portable Document Format
Description:
Other Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: