Stormwater biofilter response to high nitrogen loading under transient flow conditions: Ammonium and nitrate fates, and nitrous oxide emissions
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Nitrogen (N) in urban runoff is often treated with green infrastructure including biofilters. However, N fates across biofilters are insufficiently understood because prior studies emphasize low N loading under laboratory conditions, or use “steady-state” flow regimes over short time scales. Here, we tested field scale biofilter N fates during simulated storms delivering realistic transient flows with high N loading. Biofilter outflow ammonium (NH4+-N) was 60.7 to 92.3% lower than that of the inflow. Yet the characteristic times for nitrification (days to weeks) and denitrification (days) relative to N residence times (7 to 30 h) suggested low N transformation across the biofilters. Still, across 7 successive storms, total outflow nitrate (NO3−-N) greatly exceeded (3100 to 3900%) inflow nitrate, a result only explainable by biofilter soil N nitrification occurring between storms. Archaeal, and bacterial amoA gene copies (2.1 × 105 to 1.2 × 106 gc g soil−1), nitrifier presence by16S rRNA gene sequencing, and outflow δ18O-NO3− values (-3.0 to 17.1 ‰) reinforced that nitrification was occurring. A ratio of δ18O-NO3− to δ15N-NO3− of 1.83 for soil eluates indicated additional processes: N assimilation, and N mineralization. Denitrification potential was suggested by enzyme activities and soil denitrifying gene copies (nirK + nirS: 3.0 × 106 to 1.8 × 107; nosZ: 5.0 × 105 to 2.2 × 106 gc g soil−1). However, nitrous oxide (N2O-N) emissions (13.5 to 84.3 μg N m −2 h −1) and N2O export (0.014 g N) were low, and soil nitrification enzyme activities (0.45 to 1.63 mg N kg soil−1day−1) exceeded those for denitrification (0.17 to 0.49 mg N kg soil−1 day−1). Taken together, chemical, bacterial, and isotopic metrics evidenced that storm inflow NH4+sorbs and, along with mineralized soil N, nitrifies during biofilter dry-down; little denitrification and associated N2O emissions ensue, and thus subsequent storms export copious NO3−-N. As such, pulsed pass-through biofilters require redesign to promote plant assimilation and/or denitrification of mineralized and nitrified N, to minimize NO3−-N generation and export.