Stormwater biofilter response to high nitrogen loading under transient flow conditions: Ammonium and nitrate fates, and nitrous oxide emissions
dc.contributor.author | Feraud, Marina | en |
dc.contributor.author | Ahearn, Sean P. | en |
dc.contributor.author | Parker, Emily A. | en |
dc.contributor.author | Avasarala, Sumant | en |
dc.contributor.author | Rugh, Megyn B. | en |
dc.contributor.author | Hung, Wei-Cheng | en |
dc.contributor.author | Li, Dong | en |
dc.contributor.author | Van De Werfhorst, Laurie C. | en |
dc.contributor.author | Kefela, Timnit | en |
dc.contributor.author | Hemati, Azadeh | en |
dc.contributor.author | Mehring, Andrew S. | en |
dc.contributor.author | Cao, Yiping | en |
dc.contributor.author | Jay, Jennifer A. | en |
dc.contributor.author | Liu, Haizhou | en |
dc.contributor.author | Grant, Stanley B. | en |
dc.contributor.author | Holden, Patricia A. | en |
dc.date.accessioned | 2024-02-26T14:47:36Z | en |
dc.date.available | 2024-02-26T14:47:36Z | en |
dc.date.issued | 2022-12-17 | en |
dc.description.abstract | Nitrogen (N) in urban runoff is often treated with green infrastructure including biofilters. However, N fates across biofilters are insufficiently understood because prior studies emphasize low N loading under laboratory conditions, or use “steady-state” flow regimes over short time scales. Here, we tested field scale biofilter N fates during simulated storms delivering realistic transient flows with high N loading. Biofilter outflow ammonium (NH4+-N) was 60.7 to 92.3% lower than that of the inflow. Yet the characteristic times for nitrification (days to weeks) and denitrification (days) relative to N residence times (7 to 30 h) suggested low N transformation across the biofilters. Still, across 7 successive storms, total outflow nitrate (NO3−-N) greatly exceeded (3100 to 3900%) inflow nitrate, a result only explainable by biofilter soil N nitrification occurring between storms. Archaeal, and bacterial amoA gene copies (2.1 × 105 to 1.2 × 106 gc g soil−1), nitrifier presence by16S rRNA gene sequencing, and outflow δ18O-NO3− values (-3.0 to 17.1 ‰) reinforced that nitrification was occurring. A ratio of δ18O-NO3− to δ15N-NO3− of 1.83 for soil eluates indicated additional processes: N assimilation, and N mineralization. Denitrification potential was suggested by enzyme activities and soil denitrifying gene copies (nirK + nirS: 3.0 × 106 to 1.8 × 107; nosZ: 5.0 × 105 to 2.2 × 106 gc g soil−1). However, nitrous oxide (N2O-N) emissions (13.5 to 84.3 μg N m −2 h −1) and N2O export (0.014 g N) were low, and soil nitrification enzyme activities (0.45 to 1.63 mg N kg soil−1day−1) exceeded those for denitrification (0.17 to 0.49 mg N kg soil−1 day−1). Taken together, chemical, bacterial, and isotopic metrics evidenced that storm inflow NH4+sorbs and, along with mineralized soil N, nitrifies during biofilter dry-down; little denitrification and associated N2O emissions ensue, and thus subsequent storms export copious NO3−-N. As such, pulsed pass-through biofilters require redesign to promote plant assimilation and/or denitrification of mineralized and nitrified N, to minimize NO3−-N generation and export. | en |
dc.description.version | Published version | en |
dc.format.extent | 11 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | ARTN 119501 (Article number) | en |
dc.identifier.doi | https://doi.org/10.1016/j.watres.2022.119501 | en |
dc.identifier.eissn | 1879-2448 | en |
dc.identifier.issn | 0043-1354 | en |
dc.identifier.orcid | Grant, Stanley [0000-0001-6221-7211] | en |
dc.identifier.other | S0043-1354(22)01446-4 (PII) | en |
dc.identifier.pmid | 36587519 | en |
dc.identifier.uri | https://hdl.handle.net/10919/118153 | en |
dc.identifier.volume | 230 | en |
dc.language.iso | en | en |
dc.publisher | Pergamon-Elsevier | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/36587519 | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Pollutant Removal | en |
dc.subject | Bioretention | en |
dc.subject | Denitrification | en |
dc.subject | Performance | en |
dc.subject | Prokaryotes | en |
dc.subject | Nutrient | en |
dc.subject.mesh | Nitrates | en |
dc.subject.mesh | Nitrogen | en |
dc.subject.mesh | Nitrous Oxide | en |
dc.subject.mesh | Ammonium Compounds | en |
dc.subject.mesh | Soil | en |
dc.subject.mesh | Soil Microbiology | en |
dc.subject.mesh | Denitrification | en |
dc.subject.mesh | Nitrification | en |
dc.title | Stormwater biofilter response to high nitrogen loading under transient flow conditions: Ammonium and nitrate fates, and nitrous oxide emissions | en |
dc.title.serial | Water Research | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
dcterms.dateAccepted | 2022-12-15 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Civil & Environmental Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |