Determining the most appropiate [sic] sampling interval for a Shewhart X-chart
dc.contributor.author | Vining, G. Geoffrey | en |
dc.contributor.department | Statistics | en |
dc.date.accessioned | 2019-10-10T19:12:03Z | en |
dc.date.available | 2019-10-10T19:12:03Z | en |
dc.date.issued | 1986 | en |
dc.description.abstract | A common problem encountered in practice is determining when it is appropriate to change the sampling interval for control charts. This thesis examines this problem for Shewhart X̅ charts. Duncan's economic model (1956) is used to develop a relationship between the most appropriate sampling interval and the present rate of"disturbances,” where a disturbance is a shift to an out of control state. A procedure is proposed which switches the interval to convenient values whenever a shift in the rate of disturbances is detected. An example using simulation demonstrates the procedure. | en |
dc.description.degree | M.S. | en |
dc.format.extent | vii, 66 leaves | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/94487 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Polytechnic Institute and State University | en |
dc.relation.isformatof | OCLC# 15715962 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V855 1986.V564 | en |
dc.subject.lcsh | Quality control -- Charts, diagrams, etc | en |
dc.subject.lcsh | Quality control -- Statistical methods | en |
dc.subject.lcsh | Sampling (Statistics) | en |
dc.subject.lcsh | Statistics -- Charts, diagrams, etc | en |
dc.title | Determining the most appropiate [sic] sampling interval for a Shewhart X-chart | en |
dc.type | Thesis | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Statistics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | M.S. | en |
Files
Original bundle
1 - 1 of 1