Numerical Modeling and Prediction of Bubbling Fluidized Beds

dc.contributor.authorEngland, Jonas Andrewen
dc.contributor.committeechairBattaglia, Francineen
dc.contributor.committeememberPitchumani, Rangaen
dc.contributor.committeememberDiller, Thomas E.en
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2014-03-14T20:34:49Zen
dc.date.adate2011-05-24en
dc.date.available2014-03-14T20:34:49Zen
dc.date.issued2011-04-27en
dc.date.rdate2011-05-24en
dc.date.sdate2011-05-02en
dc.description.abstractNumerical modeling and prediction techniques are used to determine pressure drop, minimum fluidization velocity and segregation for bubbling fluidized beds. The computational fluid dynamics (CFD) code Multiphase Flow with Interphase eXchange (MFIX) is used to study a two-stage reactor geometry with a binary mixture. MFIX is demonstrated to accurately predict pressure drop versus inlet gas velocity for binary mixtures. A new method is developed to predict the pressure drop versus inlet gas velocity and minimum fluidization velocity for multi-component fluidized beds. The mass accounting in the stationary system (MASS) method accounts for the changing bed composition during the fluidization process by using a novel definition for the mass fractions of the bed not yet fluidized. Published experimental data for pressure drop from single-, binary- and ternary-component fluidized bed systems are compared to MFIX simulations and the MASS method, with good agreement between all three approaches. Minimum fluidization velocities predicted using correlations in the literature were compared with the experimental data, MFIX, and the MASS method. The predicted minimum fluidization velocity from the MASS method provided very good results with an average relative error of ±4%. The MASS method is shown to accurately predict when complex multi-component systems of granular material will fluidize. The MASS method and MFIX are also used to explore the occurrence and extent of segregation in multi-component systems. The MASS method and MFIX are both shown to accurately predict the occurrence and extent of segregation in multi-component systems.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-05022011-091831en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-05022011-091831/en
dc.identifier.urihttp://hdl.handle.net/10919/32118en
dc.publisherVirginia Techen
dc.relation.haspartEngland_JA_T_2011._3.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectFluidized bedsen
dc.subjectmixturesen
dc.subjectpressure dropen
dc.subjectminimum fluidization velocityen
dc.titleNumerical Modeling and Prediction of Bubbling Fluidized Bedsen
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
England_JA_T_2011._3.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format

Collections