Integration of Open-Source Networks

dc.contributor.authorCooper, Thomas A.en
dc.contributor.committeecochairReed, Jeffrey H.en
dc.contributor.committeecochairClancy, Thomas Charles IIIen
dc.contributor.committeememberBose, Tamalen
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2014-03-14T20:35:44Zen
dc.date.adate2012-05-10en
dc.date.available2014-03-14T20:35:44Zen
dc.date.issued2012-04-27en
dc.date.rdate2012-05-10en
dc.date.sdate2012-05-08en
dc.description.abstractGlobal System for Mobile Communications (GSM) networks are receiving increasing attention in the open-source community. Open-source software allows for deployment of a mobile cellular network with lower costs, more customization, and scalable control. Two popular projects have emerged that offer varying network architectures and allow users to implement a GSM network in different capacities depending on individual needs. Osmocom provides more network control and scalability but requires commercial Base Transceiver Station (BTS) hardware with limited availability and closed source code. OpenBTS provides minimal GSM network functionality with more easily available and open-source hardware; however, it does not allow multi-cellular network configuration. This thesis offers a significant contribution towards a fully open-source GSM network by integrating the two major open-source communities, Osmocom and OpenBTS. Specifically, the Osmo-USRP program provides an inter-layer interface between the different network architectures of two GSM base station projects. Inter-layer primitive messages are processed in a thread multiplexer that manages logical channels across the interface. Downstream flow control is implemented in order to receive data frames on time for transmitting at the appropriate GSM frame number (FN). Uplink measurements, which are necessary for decision making in the Base Station Controller (BSC), are also gathered in the physical layer of Osmo-USRP and reported to Osmocom. Osmo-USRP operation is tested using a Universal Software Radio Peripheral (USRP), a relatively inexpensive and accessible Software-Defined Radio (SDR). Standard GSM events are investigated for single cell and multi-cellular network configurations. These tests include subscriber authentication and encryption, location updating, International Mobile Subscriber Identity (IMSI) attach and detach, Short Message Service (SMS) storage and delivery, voice calls with the full-rate audio codec, and uplink and downlink measurement reporting. While most functionality is successfully tested, inter-cell handover is not currently implemented. Further details on the proposed implementation of program limitations, especially inter-cell handover, are also discussed.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-05082012-141540en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-05082012-141540/en
dc.identifier.urihttp://hdl.handle.net/10919/32401en
dc.publisherVirginia Techen
dc.relation.haspartCooper_TA_T_2012.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectGSMen
dc.subjectBase Transceiver Stationen
dc.subjectCellular Networken
dc.subjectNetwork Architectureen
dc.subjectOpen-Source Softwareen
dc.subjectProtocol Layersen
dc.subjectSoftware-Defined Radioen
dc.subjectWirelessen
dc.titleIntegration of Open-Source Networksen
dc.typeThesisen
thesis.degree.disciplineElectrical and Computer Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cooper_TA_T_2012.pdf
Size:
803.37 KB
Format:
Adobe Portable Document Format

Collections