Reaction-controlled diffusion: Monte Carlo simulations
dc.contributor.author | Reid, Beth A. | en |
dc.contributor.author | Täuber, Uwe C. | en |
dc.contributor.author | Brunson, Jason C. | en |
dc.contributor.department | Physics | en |
dc.date.accessioned | 2016-09-30T13:05:59Z | en |
dc.date.available | 2016-09-30T13:05:59Z | en |
dc.date.issued | 2003-10-01 | en |
dc.description.abstract | We study the coupled two-species non-equilibrium reaction-controlled diffusion model introduced by Trimper et al. [Phys. Rev. E 62, 6071 (2000)] by means of detailed Monte Carlo simulations in one and two dimensions. Particles of type A may independently hop to an adjacent lattice site provided it is occupied by at least one B particle. The B particle species undergoes diffusion-limited reactions. In an active state with nonzero, essentially homogeneous B particle saturation density, the A species displays normal diffusion. In an inactive, absorbing phase with exponentially decaying B density, the A particles become localized. In situations with algebraic decay ρB(t) ∼ t<sup>−∞B</sup>, as occuring either at a non-equilibrium continuous phase transition separating active and absorbing states, or in a power-law inactive phase, the A particles propagate subdiffusively with mean-square displacement ⟨<sup>→</sup>x(t)<sup>2</sup>A⟩~t<sup>1-∞A</sup>. We find that within the accuracy of our simulation data, αA ≈ αB as predicted by a simple mean-field approach. This remains true even in the presence of strong spatio-temporal fluctuations of the B density. However, in contrast with the mean-field results, our data yield a distinctly non-Gaussian A particle displacement distribution n<sub>A</sub>(<sup>→</sup>x, t) that obeys dynamic scaling and looks remarkably similar for the different processes investigated here. Fluctuations of effective diffusion rates cause a marked enhancement of n<sub>A</sub>(<sup>→</sup>x, t) at low displacements |<sup>→</sup>x|, indicating a considerable fraction of practically localized A particles, as well as at large traversed distances. | en |
dc.description.version | Published version | en |
dc.format.extent | ? - ? (19) page(s) | en |
dc.identifier.doi | https://doi.org/10.1103/PhysRevE.68.046121 | en |
dc.identifier.issn | 1539-3755 | en |
dc.identifier.issue | 4 | en |
dc.identifier.uri | http://hdl.handle.net/10919/73105 | en |
dc.identifier.volume | 68 | en |
dc.language | English | en |
dc.publisher | American Physical Society | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000186571200030&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Physics, Fluids & Plasmas | en |
dc.subject | Physics, Mathematical | en |
dc.subject | Physics | en |
dc.subject | ANNIHILATING RANDOM-WALKS | en |
dc.subject | PHASE-TRANSITIONS | en |
dc.subject | RENORMALIZATION-GROUP | en |
dc.subject | DIRECTED PERCOLATION | en |
dc.subject | FIELD-THEORY | en |
dc.title | Reaction-controlled diffusion: Monte Carlo simulations | en |
dc.title.serial | Physical Review E | en |
dc.type | Article - Refereed | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/COS T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science/Physics | en |