Reaction-controlled diffusion: Monte Carlo simulations

dc.contributor.authorReid, Beth A.en
dc.contributor.authorTäuber, Uwe C.en
dc.contributor.authorBrunson, Jason C.en
dc.contributor.departmentPhysicsen
dc.date.accessioned2016-09-30T13:05:59Zen
dc.date.available2016-09-30T13:05:59Zen
dc.date.issued2003-10-01en
dc.description.abstractWe study the coupled two-species non-equilibrium reaction-controlled diffusion model introduced by Trimper et al. [Phys. Rev. E 62, 6071 (2000)] by means of detailed Monte Carlo simulations in one and two dimensions. Particles of type A may independently hop to an adjacent lattice site provided it is occupied by at least one B particle. The B particle species undergoes diffusion-limited reactions. In an active state with nonzero, essentially homogeneous B particle saturation density, the A species displays normal diffusion. In an inactive, absorbing phase with exponentially decaying B density, the A particles become localized. In situations with algebraic decay ρB(t) ∼ t<sup>−&#8734;B</sup>, as occuring either at a non-equilibrium continuous phase transition separating active and absorbing states, or in a power-law inactive phase, the A particles propagate subdiffusively with mean-square displacement &#10216;<sup>&#8594;</sup>x(t)<sup>2</sup>A&#10217;~t<sup>1-&#8734;A</sup>. We find that within the accuracy of our simulation data, αA ≈ αB as predicted by a simple mean-field approach. This remains true even in the presence of strong spatio-temporal fluctuations of the B density. However, in contrast with the mean-field results, our data yield a distinctly non-Gaussian A particle displacement distribution n<sub>A</sub>(<sup>&#8594;</sup>x, t) that obeys dynamic scaling and looks remarkably similar for the different processes investigated here. Fluctuations of effective diffusion rates cause a marked enhancement of n<sub>A</sub>(<sup>&#8594;</sup>x, t) at low displacements |<sup>&#8594;</sup>x|, indicating a considerable fraction of practically localized A particles, as well as at large traversed distances.en
dc.description.versionPublished versionen
dc.format.extent? - ? (19) page(s)en
dc.identifier.doihttps://doi.org/10.1103/PhysRevE.68.046121en
dc.identifier.issn1539-3755en
dc.identifier.issue4en
dc.identifier.urihttp://hdl.handle.net/10919/73105en
dc.identifier.volume68en
dc.languageEnglishen
dc.publisherAmerican Physical Societyen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000186571200030&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPhysics, Fluids & Plasmasen
dc.subjectPhysics, Mathematicalen
dc.subjectPhysicsen
dc.subjectANNIHILATING RANDOM-WALKSen
dc.subjectPHASE-TRANSITIONSen
dc.subjectRENORMALIZATION-GROUPen
dc.subjectDIRECTED PERCOLATIONen
dc.subjectFIELD-THEORYen
dc.titleReaction-controlled diffusion: Monte Carlo simulationsen
dc.title.serialPhysical Review Een
dc.typeArticle - Refereeden
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0306014v2.pdf
Size:
1018.72 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: