Dynamics of Pitching Wave Energy Converter with Resonant U-Tank Power Extraction Device
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This research revolves around the concept design and theoretical validation of a new type of wave energy converter (WEC), comprising a pitching floater integrated with a resonant U-tank (RUT) and a Wells turbine as power take-off (PTO). Theoretical formulation of a fully coupled multi-body dynamic system, incorporating the thermodynamic processes of the RUT air chamber, its interaction with the PTO dynamics and their coupling with the floater is presented.
Inaccuracies of the dynamic modeling of RUT based on Lloyd's low order model, which assumes constant hydrodynamic parameters irrespective of the frequency, are demonstrated by a series of high fidelity CFD simulations. These simulations are a systematic series of fully viscous turbulent simulations, using unsteady RANSE solvers, of the water sloshing at different frequencies of oscillation. Calibration of Lloyd’s model with CFD results evidenced that the RUT hydrodynamic parameters are not invariant to frequency.
A numerical model was developed based on Simulink WEC-Sim libraries to solve the non-linear thermo-hydrodynamic equations of the device in time domain. For power assessment, parametric investigations are conducted by varying the main dimensions of the RUT and power RAOs were computed for each iteration.
Performance in irregular sea state are assessed using a statistical approach with the assumption of linear wave theory. By superimposing spectrum energy density from two resource sites with RAO, mean annual energy production (MEAP) are computed. The predicted MEAP favorably compares with other existing devices, confirming the superior efficiency of the new proposed device over a larger range of incident wave frequency.