Sulfasalazine decreases mouse cortical hyperexcitability

dc.contributor.authorAlcoreza, Oscar Jr.en
dc.contributor.authorTewari, Bhanu P.en
dc.contributor.authorBouslog, Allisonen
dc.contributor.authorSavoia, Andrewen
dc.contributor.authorSontheimer, Haralden
dc.contributor.authorCampbell, Susan L.en
dc.date.accessioned2021-05-04T17:57:36Zen
dc.date.available2021-05-04T17:57:36Zen
dc.date.issued2019-05-22en
dc.description.abstractObjective: Currently prescribed antiepileptic drugs (AEDs) are ineffective in treating approximately 30% of epilepsy patients. Sulfasalazine (SAS) is an US Food and Drug Administration (FDA)–approved drug for the treatment of Crohn disease that has been shown to inhibit the cystine/glutamate antiporter system xc‐ (SXC) and decrease tumor‐associated seizures. This study evaluates the effect of SAS on distinct pharmacologically induced network excitability and determines whether it can further decrease hyperexcitability when administered with currently prescribed AEDs. Methods: Using in vitro cortical mouse brain slices, whole‐cell patch‐clamp recordings were made from layer 2/3 pyramidal neurons. Epileptiform activity was induced with bicuculline (bic), 4‐aminopyridine (4‐AP) and magnesium‐free (Mg2+‐free) solution to determine the effect of SAS on epileptiform events. In addition, voltagesensitive dye (VSD) recordings were performed to characterize the effect of SAS on the spatiotemporal spread of hyperexcitable network activity and compared to currently prescribed AEDs. Results: SAS decreased evoked excitatory postsynaptic currents (eEPSCs) and increased the decay kinetics of evoked inhibitory postsynaptic currents (eIPSCs) in layer 2/3 pyramidal neurons. Although application of SAS to bic and Mg2+‐free–induced epileptiform activity caused a decrease in the duration of epileptiform events, SAS completely blocked 4‐AP–induced epileptiform events. In VSD recordings, SAS decreased VSD optical signals induced by 4‐AP. Co‐application of SAS with the AED topiramate (TPM) caused a significantly further decrease in the spatiotemporal spread of VSD optical signals. Significance: Taken together this study provides evidence that inhibition of SXC by SAS can decrease network hyperexcitability induced by three distinct pharmacologic agents in the superficial layers of the cortex. Furthermore, SAS provided additional suppression of 4‐AP–induced network activity when administered with the currently prescribed AED TPM. These findings may serve as a foundation to assess the potential for SAS or other compounds that selectively target SXC as an adjuvant treatment for epilepsy.en
dc.description.sponsorshipFoundation for the National Institutes of Health, Grant/Award Number: 5R01‐NS036692, R01‐NS052634 and R01CA227149en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1111/epi.16073en
dc.identifier.urihttp://hdl.handle.net/10919/103189en
dc.identifier.volume60en
dc.language.isoenen
dc.publisherWileyen
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en
dc.subjectantiepileptic drugsen
dc.subjectepilepsyen
dc.subjectseizureen
dc.subjectsulfasalazineen
dc.subjectsystem xc‐en
dc.titleSulfasalazine decreases mouse cortical hyperexcitabilityen
dc.title.serialEpilepsiaen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
epi.16073.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: