PCB-Embedded Phase Current Sensor and Short-Circuit Detector for High Power SiC-Based Converters

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Nowadays, major public concern is concentrated on reducing the usage of fossil fuels and reducing emissions of CO₂ by different energy advancement. Electric vehicle technology presents extremely effective way of reducing carbon emissions and paves the way of having sustainable and renewable energy future. In order to wear the cost of electric vehicles down, batteries have to be improved as well as higher power density and high reliability has to be achieved. This research work mainly focuses on achieving higher power density and higher reliability of the inverter stage by utilizing wide-bandgap SiC MOSFET semiconductor devices in electric vehicle application.

In order to achieve higher reliability of the inverter stage, high bandwidth, high performance Rogowski coil switch current sensors are employed. These sensor were embedded on the PCB and integrated on the gate driver. High bandwidth switch current sensor measurement is used for fast short-circuit detection and protection of the SiC MOSFET semiconductor switches. Furthermore, comparison with conventional detection and protection method used in automotive IGBT applications is shown where novel protection showed superior performance.

This thesis also shows principle of how to obtain phase currents of the system using Rogowski coil switch current sensor measurements. Digital reconstruction principle is employed to obtain the phase currents. Accurate and linear current sensor is achieved. By successfully realizing this integrated phase current measurement on the gate driver, elimination of the commercial current sensors from the system is possible. By eliminating existing phase current sensors, higher power density could be achieved. Sensor is evaluated in both continuous and discontinuous PWM schemes.

SiC MOSFET, Rogowski coil, switch current sensor, phase current sensor, short-circuit protection, desaturation