Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle

dc.contributor.authorMontilla, Sandra I. Rosadoen
dc.contributor.authorJohnson, Theresa P.en
dc.contributor.authorPearce, Sarah C.en
dc.contributor.authorGardan-Salmon, Delphineen
dc.contributor.authorGabler, Nicholas K.en
dc.contributor.authorRoss, Jason W.en
dc.contributor.authorRhoads, Robert P.en
dc.contributor.authorBaumgard, Lance H.en
dc.contributor.authorLonergan, Steven M.en
dc.contributor.authorSelsby, Joshua T.en
dc.contributor.departmentAnimal and Poultry Sciencesen
dc.date.accessioned2017-01-12T20:55:00Zen
dc.date.available2017-01-12T20:55:00Zen
dc.date.issued2014-04en
dc.description.abstractHeat stress is associated with death and other maladaptions including muscle dysfunction and impaired growth across species. Despite this common observation, the molecular effects leading to these pathologic changes remain unclear. The purpose of this study was to determine the extent to which heat stress disrupted redox balance and initiated an inflammatory response in oxidative and glycolytic skeletal muscle. Female pigs (5-6/group) were subjected to thermoneutral (20 °C) or heat stress (35 °C) conditions for 1 or 3 days and the semitendinosus removed and dissected into red (STR) and white (STW) portions. After 1 day of heat stress, relative abundance of proteins modified by malondialdehyde, a measure of oxidative damage, was increased 2.5-fold (P < 0.05) compared with thermoneutral in the STR but not the STW, before returning to thermoneutral conditions following 3 days of heat stress. This corresponded with increased catalase and superoxide dismutase-1 gene expression (P < 0.05) and superoxide dismutase-1 protein abundance (P < 0.05) in the STR but not the STW. In the STR catalase and total superoxide dismutase activity were increased by ~30% and ~130%, respectively (P < 0.05), after 1 day of heat stress and returned to thermoneutral levels by day 3. One or 3 days of heat stress did not increase inflammatory signaling through the NF-κB pathway in the STR or STW. These data suggest that oxidative muscle is more susceptible to heat stress-mediated changes in redox balance than glycolytic muscle during chronic heat stress.en
dc.description.versionPublished versionen
dc.format.extent42 - 50 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.4161/temp.28844en
dc.identifier.issn2332-8940en
dc.identifier.issue1en
dc.identifier.urihttp://hdl.handle.net/10919/74294en
dc.identifier.volume1en
dc.language.isoenen
dc.relation.urihttp://www.ncbi.nlm.nih.gov/pubmed/27583280en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectNF-kBen
dc.subjectfree radicalsen
dc.subjectinflammationen
dc.subjectmitochondriaen
dc.subjectoxidativeen
dc.subjectpigen
dc.titleHeat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscleen
dc.title.serialTemperature (Austin)en
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Agriculture & Life Sciencesen
pubs.organisational-group/Virginia Tech/Agriculture & Life Sciences/Animal and Poultry Sciencesen
pubs.organisational-group/Virginia Tech/Agriculture & Life Sciences/CALS T&R Facultyen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Faculty of Health Sciencesen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format
Description:
Publisher's Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: