VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Mathematical modeling of mechanosensitive reversal control in Myxococcus xanthus

dc.contributor.authorChen, Yiruien
dc.contributor.authorTopo, Elias J.en
dc.contributor.authorNan, Beiyanen
dc.contributor.authorChen, Jingen
dc.date.accessioned2024-02-13T13:52:19Zen
dc.date.available2024-02-13T13:52:19Zen
dc.date.issued2024-01-08en
dc.description.abstractAdjusting motility patterns according to environmental cues is important for bacterial survival. Myxococcus xanthus, a bacterium moving on surfaces by gliding and twitching mechanisms, modulates the reversal frequency of its front-back polarity in response to mechanical cues like substrate stiffness and cell-cell contact. In this study, we propose that M. xanthus’s gliding machinery senses environmental mechanical cues during force generation and modulates cell reversal accordingly. To examine our hypothesis, we expand an existing mathematical model for periodic polarity reversal in M. xanthus, incorporating the experimental data on the intracellular dynamics of the gliding machinery and the interaction between the gliding machinery and a key polarity regulator. The model successfully reproduces the dependence of cell reversal frequency on substrate stiffness observed in M. xanthus gliding. We further propose reversal control networks between the gliding and twitching motility machineries to explain the opposite reversal responses observed in wild type M. xanthus cells that possess both motility mechanisms. These results provide testable predictions for future experimental investigations. In conclusion, our model suggests that the gliding machinery in M. xanthus can function as a mechanosensor, which transduces mechanical cues into a cell reversal signal.en
dc.description.versionPublished versionen
dc.format.extent10 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 1294631 (Article number)en
dc.identifier.doihttps://doi.org/10.3389/fmicb.2023.1294631en
dc.identifier.eissn1664-302Xen
dc.identifier.issn1664-302Xen
dc.identifier.orcidChen, Jing [0000-0001-6321-0505]en
dc.identifier.otherPMC10803039en
dc.identifier.pmid38260904en
dc.identifier.urihttps://hdl.handle.net/10919/117970en
dc.identifier.volume14en
dc.language.isoenen
dc.publisherFrontiersen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/38260904en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectmechanosensingen
dc.subjectbacterial motilityen
dc.subjectgliding motilityen
dc.subjectpolarity regulationen
dc.subjectmyxobacteriaen
dc.subjectmathematical modelingen
dc.titleMathematical modeling of mechanosensitive reversal control in <i>Myxococcus xanthus</i>en
dc.title.serialFrontiers in Microbiologyen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2023-12-11en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Biological Sciencesen
pubs.organisational-group/Virginia Tech/Faculty of Health Sciencesen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mathematical modeling of mechanosensitive reversal control in iMyxococcus xanthusi.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: