Optimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle model

dc.contributor.authorOguz, Cihanen
dc.contributor.authorLaomettachit, Teeraphanen
dc.contributor.authorChen, Katherine C.en
dc.contributor.authorWatson, Layne T.en
dc.contributor.authorBaumann, William T.en
dc.contributor.authorTyson, John J.en
dc.contributor.departmentElectrical and Computer Engineeringen
dc.contributor.departmentBiological Sciencesen
dc.contributor.departmentComputer Scienceen
dc.contributor.departmentMathematicsen
dc.date.accessioned2016-12-09T21:40:26Zen
dc.date.available2016-12-09T21:40:26Zen
dc.date.issued2013-06-28en
dc.description.abstractBackground 'Parameter estimation from experimental data is critical for mathematical modeling of protein regulatory networks. For realistic networks with dozens of species and reactions, parameter estimation is an especially challenging task. In this study, we present an approach for parameter estimation that is effective in fitting a model of the budding yeast cell cycle (comprising 26 nonlinear ordinary differential equations containing 126 rate constants) to the experimentally observed phenotypes (viable or inviable) of 119 genetic strains carrying mutations of cell cycle genes. Results Starting from an initial guess of the parameter values, which correctly captures the phenotypes of only 72 genetic strains, our parameter estimation algorithm quickly improves the success rate of the model to 105-111 of the 119 strains. This success rate is comparable to the best values achieved by a skilled modeler manually choosing parameters over many weeks. The algorithm combines two search and optimization strategies. First, we use Latin hypercube sampling to explore a region surrounding the initial guess. From these samples, we choose ∼20 different sets of parameter values that correctly capture wild type viability. These sets form the starting generation of differential evolution that selects new parameter values that perform better in terms of their success rate in capturing phenotypes. In addition to producing highly successful combinations of parameter values, we analyze the results to determine the parameters that are most critical for matching experimental outcomes and the most competitive strains whose correct outcome with a given parameter vector forces numerous other strains to have incorrect outcomes. These “most critical parameters” and “most competitive strains” provide biological insights into the model. Conversely, the “least critical parameters” and “least competitive strains” suggest ways to reduce the computational complexity of the optimization. Conclusions Our approach proves to be a useful tool to help systems biologists fit complex dynamical models to large experimental datasets. In the process of fitting the model to the data, the tool identifies suggestive correlations among aspects of the model and the data.en
dc.description.versionPublished versionen
dc.format.extent? - ? (17) page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBMC Systems Biology. 2013 Jun 28;7(1):53en
dc.identifier.doihttps://doi.org/10.1186/1752-0509-7-53en
dc.identifier.issn1752-0509en
dc.identifier.urihttp://hdl.handle.net/10919/73641en
dc.identifier.volume7en
dc.language.isoenen
dc.publisherBiomed Centralen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000321338300001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderCihan Oguz et al.; licensee BioMed Central Ltd.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectMathematical & Computational Biologyen
dc.subjectOptimizationen
dc.subjectBudding Yeasten
dc.subjectCell Cycleen
dc.subjectODE Modelen
dc.subjectModel Reductionen
dc.subjectPhenotypic Constraintsen
dc.subjectLatin Hypercube Samplingen
dc.subjectDifferential Evolutionen
dc.subjectSensitivity Analysisen
dc.subjectPhenotype Competitionen
dc.subjectSYSTEMS BIOLOGYen
dc.subjectSACCHAROMYCES-CEREVISIAEen
dc.subjectBIOCHEMICAL NETWORKSen
dc.subjectSENSITIVITY-ANALYSISen
dc.subjectEXPERIMENTAL-DESIGNen
dc.subjectROBUSTNESSen
dc.subjectIDENTIFIABILITYen
dc.subjectMECHANISMen
dc.titleOptimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle modelen
dc.title.serialBMC Systems Biologyen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen
pubs.organisational-group/Virginia Tech/Engineering/Electrical and Computer Engineeringen
pubs.organisational-group/Virginia Tech/Faculty of Health Sciencesen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Biological Sciencesen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/University Distinguished Professorsen

Files

Original bundle
Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
Optimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle model.pdf
Size:
751.95 KB
Format:
Adobe Portable Document Format
Description:
Publisher's Version
Loading...
Thumbnail Image
Name:
1752-0509-7-53-S1.PDF
Size:
195.01 KB
Format:
Adobe Portable Document Format
Description:
Name:
1752-0509-7-53-S2.ZIP
Size:
19.32 KB
Format:
Description:
Loading...
Thumbnail Image
Name:
1752-0509-7-53-S3.PDF
Size:
88.37 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
1752-0509-7-53-S4.PDF
Size:
70.17 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: