An Assessment and Modeling of Copper Plumbing pipe Failures due to Pinhole Leaks
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Pinhole leaks in copper plumbing pipes are a big concern for the homeowners. The problem is spread across the nation and remains a threat to plumbing systems of all ages. Due to the absence of a single acceptable mechanistic theory no preventive measure is available to date. Most of the present mechanistic theories are based on analysis of failed pipe samples however an objective comparison with other pipes that did not fail is seldom made. The variability in hydraulic and water quality parameters has made the problem complex and unquantifiable in terms of plumbing susceptibility to pinhole leaks.
The present work determines the spatial and temporal spread of pinhole leaks across United States. The hotspot communities are identified based on repair histories and surveys. An assessment of variability in water quality is presented based on nationwide water quality data. A synthesis of causal factors is presented and a scoring system for copper pitting is developed using goal programming. A probabilistic model is presented to evaluate optimal replacement time for plumbing systems. Methodologies for mechanistic modeling based on corrosion thermodynamics and kinetics are presented.