Application of r-Adaptation Techniques for Discretization Error Improvement in CFD

TR Number

Date

2015-12-08

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Computational fluid dynamics (CFD) has proven to be an invaluable tool for both engineering design and analysis. As the performance of engineering devices become more reliant upon the accuracy of CFD simulations, it is necessary to not only quantify and but also to reduce the numerical error present in a solution. Discretization error is often the primary source of numerical error. Discretization error is introduced locally into the solution by truncation error. Truncation error represents the higher order terms in an infinite series which are truncated during the discretization of the continuous governing equations of a model. Discretization error can be reduced through uniform grid refinement but is often impractical for typical engineering problems. Grid adaptation provides an efficient means for improving solution accuracy without the exponential increase in computational time associated with uniform grid refinement. Solution accuracy can be improved through local grid refinement, often referred to as h-adaptation, or by node relocation in the computational domain, often referred to as r-adaptation. The goal of this work is to examine the effectiveness of several r-adaptation techniques for reducing discretization error. A framework for geometry preservation is presented, and truncation error is used to drive adaptation. Sample problems include both subsonic and supersonic inviscid flows. Discretization error reductions of up to an order of magnitude are achieved on adapted grids.

Description

Keywords

Computational fluid dynamics, mesh adaptation, truncation error, discretization error

Citation

Collections