Measuring Energy Efficiency of Water Utilities

dc.contributor.authorGay Alanis, Leon F.en
dc.contributor.committeechairSinha, Sunil Kumaren
dc.contributor.committeememberEdwards, Marc A.en
dc.contributor.committeememberCornelius, Christopher J.en
dc.contributor.departmentCivil Engineeringen
dc.date.accessioned2014-03-14T20:42:10Zen
dc.date.adate2009-08-19en
dc.date.available2014-03-14T20:42:10Zen
dc.date.issued2009-07-06en
dc.date.rdate2009-08-19en
dc.date.sdate2009-07-28en
dc.description.abstractWater infrastructure systems worldwide use large amounts of energy to operate. Energy efficiency efforts are relevant because even relatively small gains in efficiency have the potential to bring significant benefits to these utilities in terms of financial savings and enhanced sustainability and resiliency. In order to achieve higher efficiency levels, energy usage must be measured and controlled. A common tool used to measure energy efficiency in water utilities and perform comparisons between utilities is metric benchmarking. Energy benchmarking scores are intended to measure how efficient water systems are among their peers, in a simple and accurate fashion. Although many different benchmarking methods are currently used, we chose to use the segregated benchmarking scores proposed by Carlson on his research report from 2007 (Carlson, 2007). The research objective is to improve these production energy use and treatment energy use benchmarking scores by analyzing the system's particular characteristics that might skew the results, such as topology, water loss and raw water quality. We propose that benchmarking metrics should be always used within a particular context for each specific utility being analyzed. A complementary score (Thermodynamic Score) was developed to provide context on how energy efficient is the utility not only compared with other utilities, but also compared with the potential maximum efficiency the utility can reach itself. We analyzed eight utilities from Virginia to obtain production and treatment energy use benchmarking scores and also thermodynamic scores using the minimum required energy approach. Benchmarking scores were skewed in 50% of the studied utilities. This means that benchmarking scores should never be used as a black box. The thermodynamic score proved to be useful for measurement of energy efficiency of a water utility on its production phase. In addition, some utilities can detect significant financial saving opportunities using the minimum required energy analysis for production operations.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-07282009-141002en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-07282009-141002/en
dc.identifier.urihttp://hdl.handle.net/10919/34231en
dc.publisherVirginia Techen
dc.relation.haspartMSThesisRev.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectminimum energy requirementsen
dc.subjectbenchmarkingen
dc.subjectenergy efficiencyen
dc.subjecthead lossen
dc.titleMeasuring Energy Efficiency of Water Utilitiesen
dc.typeThesisen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MSThesisRev.pdf
Size:
5.76 MB
Format:
Adobe Portable Document Format

Collections