DC vs AC Electrokinetics-Driven Nanoplasmonic Raman Monitoring of Charged Analyte Molecules in Ionic Solutions

dc.contributor.authorXiao, Chuanen
dc.contributor.authorWang, Xinen
dc.contributor.authorZhao, Yumingen
dc.contributor.authorZhang, Hongweien
dc.contributor.authorSong, Junyeoben
dc.contributor.authorVikesland, Peter J.en
dc.contributor.authorQiao, Ruien
dc.contributor.authorZhou, Weien
dc.date.accessioned2025-03-04T17:59:35Zen
dc.date.available2025-03-04T17:59:35Zen
dc.date.issued2024-08-31en
dc.description.abstractElectrokinetic surface-enhanced Raman spectroscopy (EK-SERS) is an emerging high-order analytical technique that combines the plasmonic sensitivity of SERS with the electrode interfacial molecular control of electrokinetics. However, previous EK-SERS works primarily focused on non-Faradaic direct current (DC) operation, limiting the understanding of the underlying mechanisms. Additionally, developing reliable EK-SERS devices with electrically connected plasmonic hotspots remains challenging for achieving high sensitivity and reproducibility in EK-SERS measurements. In this study, we investigated the use of two-tier nanolaminate nano-optoelectrode arrays (NL-NOEAs) for DC and alternating current (AC) EK-SERS measurements of charged analyte molecules in ionic solutions. The NL-NOEAs consist of Au/Ag/Au multilayered plasmonic nanostructures on conductive nanocomposite nanopillar arrays (NC-NPAs). We demonstrate that the NL-NOEAs exhibit high SERS enhancement factors (EFs) of ∼106 and can be used to modulate the concentration and orientation of Rhodamine 6G (R6G) molecules at the electrode surface by applying DC and AC voltages. We also performed numerical simulations to investigate the ion and R6G dynamics near the electrode surface under DC and AC voltage modulation. Our results show that AC EK-SERS can provide additional insights into the dynamics of molecular transport and adsorption processes compared to DC EK-SERS. This study demonstrates the potential of NL-NOEAs for developing high-performance EK-SERS sensors for a wide range of applications.en
dc.description.versionPublished versionen
dc.format.extentPages 15103-15116en
dc.format.extent14 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1021/acs.jpcc.4c04485en
dc.identifier.eissn1932-7455en
dc.identifier.issn1932-7447en
dc.identifier.issue36en
dc.identifier.orcidVikesland, Peter [0000-0003-2654-5132]en
dc.identifier.orcidQiao, Rui [0000-0001-5219-5530]en
dc.identifier.orcidZhou, Wei [0000-0002-5257-3885]en
dc.identifier.otherPMC11403658en
dc.identifier.pmid39291274en
dc.identifier.urihttps://hdl.handle.net/10919/124773en
dc.identifier.volume128en
dc.language.isoenen
dc.publisherAmerican Chemical Societyen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/39291274en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleDC vs AC Electrokinetics-Driven Nanoplasmonic Raman Monitoring of Charged Analyte Molecules in Ionic Solutionsen
dc.title.serialJournal of Physical Chemistry Cen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2024-08-23en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Civil & Environmental Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Electrical and Computer Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Mechanical Engineeringen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DC vs AC Electrokinetics-Driven Nanoplasmonic Raman Monitoring of Charged Analyte Molecules in Ionic Solutions.pdf
Size:
7.49 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: