Blast Performance of Hybrid GFRP and Steel Reinforced Concrete Beams

dc.contributor.authorJohnson, Jalen Gerrelden
dc.contributor.committeechairJacques, Eric Jean-Yvesen
dc.contributor.committeememberRoberts-Wollmann, Carin L.en
dc.contributor.committeememberEatherton, Matthew R.en
dc.contributor.departmentCivil and Environmental Engineeringen
dc.date.accessioned2020-06-23T08:01:59Zen
dc.date.available2020-06-23T08:01:59Zen
dc.date.issued2020-06-22en
dc.description.abstractThe threat of terrorist bombings and accidental industrial explosions motivates the need for more economical and efficient blast-resistant construction techniques that offer enhanced levels of protection at reduced component damage levels. Despite having a high strength-to-weight ratio and being chemically inert, fiber reinforced polymer (FRP) reinforcing bars are not currently used in blast-resistant reinforced concrete due to their brittle nature and lack of ductility. However, the innovative use of blended mixtures of FRP and steel rebar as tensile reinforcement promises to address these limitations through self-centering behavior that provides reductions in residual damage and enhancements in flexural performance. This thesis presents the results of an experimental and analytical investigation on the effect of hybrid arrangements of glass fiber reinforced polymer (GFRP) and conventional mild steel reinforcement on the blast performance of reinforced concrete beams. Seven large-scale reinforced concrete beams with different combinations of tensile steel and GFRP rebar were designed, constructed, and tested under progressively increasing blast loading generated using the Virginia Tech Shock Tube Research Facility. The effect of hybrid reinforcing on the blast performance of the beams was evaluated based on the global response, failure mode, damage pattern, mid-span displacement, and support reactions of the tested beams. The results demonstrated several benefits in using hybrid arrangements of steel and GFRP reinforcement. Beams with hybrid reinforcing experienced reduced overall residual displacements compared with similar conventionally reinforced concrete members. This was attributed to the elastic nature of GFRP rebar which was found to produce a self-centering behavior that assisted in returning the hybrid members to their original undeformed position. This permitted the hybrid beams to safely experience larger maximum displacements at substantially less damage than all-steel construction. Furthermore, if the GFRP reinforcement did rupture, the presence of steel arrested hazardous component failure and provided additional energy dissipation and redundancy. Accompanying the experimental tests was an inelastic single-degree-of-freedom analysis to predict the displacement time-history response of the beams. Reasonably good predictions of response were obtained when the advanced material models and the effects of accumulated damage due to repeated blast testing were incorporated into the analytical predictions. Finally, a series of protective design recommendations and a new proposed response limit, that describes the level of damage achieved after a blast event, were established to encourage use of hybrid GFRP/steel reinforcement in blast-resistant construction.en
dc.description.abstractgeneralThe threat of terrorist bombings and accidental industrial explosions motivate the need for new blast resistant construction techniques. Despite having a high strength-to-weight ratio and being chemically inert, fiber reinforced polymer (FRP) reinforcing bars are not currently used in blast-resistant reinforced concrete due to their brittle nature and lack of ductility. However, the innovative use of blended mixtures of FRP and steel rebar as tensile reinforcement promises to address these limitations through self-centering behavior that provides reductions in residual damage and enhancements in flexural performance. Large-scale reinforced concrete beams with different combinations of steel and GFRP rebar were designed, constructed, and tested under progressively increasing blast loads, gen-erated by the Virginia Tech Shock Tube Research Facility. The results demonstrated that beams with hybrid reinforcing experienced reduced overall residual damage in comparison with similar conventionally reinforced concrete members. Additionally, if the GFRP rebar ruptured, the presence of steel prevented a brittle failure and provided additional energy dissipation and redundancy. The inelastic single degree of freedom model developed for this investigation resulted in an adequate prediction of the load-deflection characteristics record-ed from experimental testing. To encourage the use of hybrid FRP/steel reinforcement in blast-resistant construction, a series of protective design recommendations and a proposed response limit, that describes the level of damage achieved after a given blast event, were established.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:26609en
dc.identifier.urihttp://hdl.handle.net/10919/99085en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectReinforced concreteen
dc.subjectHybrid reinforcementen
dc.subjectGFRPen
dc.subjectBlast resistanceen
dc.subjectShock tubeen
dc.subjectSDOF analysisen
dc.titleBlast Performance of Hybrid GFRP and Steel Reinforced Concrete Beamsen
dc.typeThesisen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Johnson_JG_T_2020.pdf
Size:
22.16 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Johnson_JG_T_2020_support_1.pdf
Size:
396.51 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents

Collections