Front propagation in a chaotic flow field

dc.contributor.authorMehrvarzi, C. O.en
dc.contributor.authorPaul, Mark R.en
dc.date.accessioned2024-10-09T14:05:39Zen
dc.date.available2024-10-09T14:05:39Zen
dc.date.issued2014-07-21en
dc.description.abstractWe investigate numerically the dynamics of a propagating front in the presence of a spatiotemporally chaotic flow field. The flow field is the three-dimensional time-dependent state of spiral defect chaos generated by Rayleigh-Bénard convection in a spatially extended domain. Using large-scale parallel numerical simulations, we simultaneously solve the Boussinesq equations and a reaction-advection-diffusion equation with a Fischer-Kolmogorov-Petrovskii-Piskunov reaction for the transport of the scalar species in a large-aspect-ratio cylindrical domain for experimentally accessible conditions. We explore the front dynamics and geometry in the low-Damköhler-number regime, where the effect of the flow field is significant. Our results show that the chaotic flow field enhances the front propagation when compared with a purely cellular flow field. We quantify this enhancement by computing the spreading rate of the reaction products for a range of parameters. We use our results to quantify the complexity of the three-dimensional front geometry for a range of chaotic flow conditions.en
dc.description.versionPublished versionen
dc.format.extent7 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 012905 (Article number)en
dc.identifier.doihttps://doi.org/10.1103/PhysRevE.90.012905en
dc.identifier.eissn1550-2376en
dc.identifier.issn1539-3755en
dc.identifier.issue1en
dc.identifier.orcidPaul, Mark [0000-0002-0701-1955]en
dc.identifier.pmid25122358en
dc.identifier.urihttps://hdl.handle.net/10919/121316en
dc.identifier.volume90en
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000339446600007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.relation.urihttp://dx.doi.org/10.1103/physreve.90.012905en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.meshNonlinear Dynamicsen
dc.subject.meshConvectionen
dc.subject.meshHydrodynamicsen
dc.subject.meshSpatio-Temporal Analysisen
dc.titleFront propagation in a chaotic flow fielden
dc.title.serialPhysical Review Een
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Mechanical Engineeringen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mehrvarzi2014.pdf
Size:
2.88 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: