Front propagation in a chaotic flow field
dc.contributor.author | Mehrvarzi, C. O. | en |
dc.contributor.author | Paul, Mark R. | en |
dc.date.accessioned | 2024-10-09T14:05:39Z | en |
dc.date.available | 2024-10-09T14:05:39Z | en |
dc.date.issued | 2014-07-21 | en |
dc.description.abstract | We investigate numerically the dynamics of a propagating front in the presence of a spatiotemporally chaotic flow field. The flow field is the three-dimensional time-dependent state of spiral defect chaos generated by Rayleigh-Bénard convection in a spatially extended domain. Using large-scale parallel numerical simulations, we simultaneously solve the Boussinesq equations and a reaction-advection-diffusion equation with a Fischer-Kolmogorov-Petrovskii-Piskunov reaction for the transport of the scalar species in a large-aspect-ratio cylindrical domain for experimentally accessible conditions. We explore the front dynamics and geometry in the low-Damköhler-number regime, where the effect of the flow field is significant. Our results show that the chaotic flow field enhances the front propagation when compared with a purely cellular flow field. We quantify this enhancement by computing the spreading rate of the reaction products for a range of parameters. We use our results to quantify the complexity of the three-dimensional front geometry for a range of chaotic flow conditions. | en |
dc.description.version | Published version | en |
dc.format.extent | 7 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | ARTN 012905 (Article number) | en |
dc.identifier.doi | https://doi.org/10.1103/PhysRevE.90.012905 | en |
dc.identifier.eissn | 1550-2376 | en |
dc.identifier.issn | 1539-3755 | en |
dc.identifier.issue | 1 | en |
dc.identifier.orcid | Paul, Mark [0000-0002-0701-1955] | en |
dc.identifier.pmid | 25122358 | en |
dc.identifier.uri | https://hdl.handle.net/10919/121316 | en |
dc.identifier.volume | 90 | en |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000339446600007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.relation.uri | http://dx.doi.org/10.1103/physreve.90.012905 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.mesh | Nonlinear Dynamics | en |
dc.subject.mesh | Convection | en |
dc.subject.mesh | Hydrodynamics | en |
dc.subject.mesh | Spatio-Temporal Analysis | en |
dc.title | Front propagation in a chaotic flow field | en |
dc.title.serial | Physical Review E | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | Virginia Tech | en |
pubs.organisational-group | Virginia Tech/Engineering | en |
pubs.organisational-group | Virginia Tech/Engineering/Mechanical Engineering | en |
pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Engineering/COE T&R Faculty | en |