VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Analysis and Modeling of Snap Loads on Synthetic Fiber Ropes

dc.contributor.authorHennessey, Christopher Michaelen
dc.contributor.committeechairPlaut, Raymond H.en
dc.contributor.committeememberCharney, Finley A.en
dc.contributor.committeememberMurray, Thomas M.en
dc.contributor.departmentCivil Engineeringen
dc.date.accessioned2011-08-06T14:41:46Zen
dc.date.adate2003-11-18en
dc.date.available2011-08-06T14:41:46Zen
dc.date.issued2003-11-07en
dc.date.rdate2003-11-18en
dc.date.sdate2003-11-09en
dc.description.abstractWhen a rope quickly transfers from a slack state to a taut state, a snapping action occurs and produces a large tensile force which is known as a snap load. Energy is dissipated during this snap load, and it is proposed to use synthetic fiber ropes as a type of passive earthquake damper in order to take advantage of this phenomenon. This thesis is the second phase of a multi-stage research project whose goal is to investigate and develop what will be known as Snapping-Cable Energy Dissipators (SCEDs). The experimental data that was collected in the Master'­s Thesis of Nicholas Pearson was organized and analyzed as a part of this research in order to evaluate the behavior of the ropes during the snapping action. Additional tests were also conducted for this project under more controlled conditions in order to better understand how the ropes change throughout a sequence of similar snap loadings and also to determine the amount of energy that is dissipated. The data from both projects was then used as input parameters for a mathematical model that was developed to characterize the behavior of the ropes during a snap load. This model will be utilized in subsequent research involving the finite element analysis of the seismic response of structural frames containing SCEDs.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.otheretd-11092003-135228en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-11092003-135228en
dc.identifier.urihttp://hdl.handle.net/10919/9616en
dc.publisherVirginia Techen
dc.relation.haspart03_-_Table_of_Cotents.pdfen
dc.relation.haspart10_-_Chapter_7_-_Summary_and_Conclusions.pdfen
dc.relation.haspart04_-_Chapter_1_-_Intro_and_Lit_Review.pdfen
dc.relation.haspart12_-_Appendix_A.pdfen
dc.relation.haspart07_-_Chapter_4_-_Analysis_Procedure.pdfen
dc.relation.haspart02_-_Abstract.pdfen
dc.relation.haspart08_-_Chapter_5_-_Analysis_Results.pdfen
dc.relation.haspart13_-_Appendix_B.pdfen
dc.relation.haspart15_-_Vita.pdfen
dc.relation.haspart14_-_Appendix_C.pdfen
dc.relation.haspart06_-_Chapter_3_-_Current_Research.pdfen
dc.relation.haspart09_-_Chapter_6_-_Model.pdfen
dc.relation.haspart05_-_Chapter_2_-_Previous_Research.pdfen
dc.relation.haspart01_-_Cover.pdfen
dc.relation.haspart11_-_References.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectSnap Loadsen
dc.subjectCablesen
dc.subjectSynthetic Fiber Ropesen
dc.subjectDrop Testsen
dc.subjectHysteresisen
dc.titleAnalysis and Modeling of Snap Loads on Synthetic Fiber Ropesen
dc.typeThesisen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 5 of 14
Loading...
Thumbnail Image
Name:
01_-_Cover.pdf
Size:
4.04 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
02_-_Abstract.pdf
Size:
4.63 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
03_-_Table_of_Cotents.pdf
Size:
40.57 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
04_-_Chapter_1_-_Intro_and_Lit_Review.pdf
Size:
19.89 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
05_-_Chapter_2_-_Previous_Research.pdf
Size:
157.03 KB
Format:
Adobe Portable Document Format

Collections